The maximum regularity property of the steady Stokes problem associated with a flow through a profile cascade in -framework
Applications of Mathematics (2023)
- Volume: 68, Issue: 2, page 171-190
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topNeustupa, Tomáš. "The maximum regularity property of the steady Stokes problem associated with a flow through a profile cascade in $L^r$-framework." Applications of Mathematics 68.2 (2023): 171-190. <http://eudml.org/doc/299513>.
@article{Neustupa2023,
abstract = {We deal with the steady Stokes problem, associated with a flow of a viscous incompressible fluid through a spatially periodic profile cascade. Using the reduction to domain $\Omega $, which represents one spatial period, the problem is formulated by means of boundary conditions of three types: the conditions of periodicity on curves $\Gamma _\{-\}$ and $\Gamma _\{+\}$ (lower and upper parts of $\partial \Omega $), the Dirichlet boundary conditions on $\Gamma _\{\rm in\}$ (the inflow) and $\Gamma _\{0\}$ (boundary of the profile) and an artificial “do nothing”-type boundary condition on $\Gamma _\{\rm out\}$ (the outflow). We show that the considered problem has a strong solution with the $L^r$-maximum regularity property for appropriately integrable given data. From this we deduce a series of properties of the corresponding strong Stokes operator.},
author = {Neustupa, Tomáš},
journal = {Applications of Mathematics},
keywords = {Stokes problem; artificial boundary condition; maximum regularity property},
language = {eng},
number = {2},
pages = {171-190},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The maximum regularity property of the steady Stokes problem associated with a flow through a profile cascade in $L^r$-framework},
url = {http://eudml.org/doc/299513},
volume = {68},
year = {2023},
}
TY - JOUR
AU - Neustupa, Tomáš
TI - The maximum regularity property of the steady Stokes problem associated with a flow through a profile cascade in $L^r$-framework
JO - Applications of Mathematics
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 2
SP - 171
EP - 190
AB - We deal with the steady Stokes problem, associated with a flow of a viscous incompressible fluid through a spatially periodic profile cascade. Using the reduction to domain $\Omega $, which represents one spatial period, the problem is formulated by means of boundary conditions of three types: the conditions of periodicity on curves $\Gamma _{-}$ and $\Gamma _{+}$ (lower and upper parts of $\partial \Omega $), the Dirichlet boundary conditions on $\Gamma _{\rm in}$ (the inflow) and $\Gamma _{0}$ (boundary of the profile) and an artificial “do nothing”-type boundary condition on $\Gamma _{\rm out}$ (the outflow). We show that the considered problem has a strong solution with the $L^r$-maximum regularity property for appropriately integrable given data. From this we deduce a series of properties of the corresponding strong Stokes operator.
LA - eng
KW - Stokes problem; artificial boundary condition; maximum regularity property
UR - http://eudml.org/doc/299513
ER -
References
top- Abe, T., 10.1002/mma.483, Math. Methods Appl. Sci. 27 (2004), 1007-1048. (2004) Zbl1050.35065MR2063094DOI10.1002/mma.483
- Acevedo, P., Amrouche, C., Conca, C., Ghosh, A., 10.1016/j.crma.2018.12.002, C. R., Math., Acad. Sci. Paris 357 (2019), 115-119. (2019) Zbl1412.35212MR3927018DOI10.1016/j.crma.2018.12.002
- Agmon, S., Lectures on Elliptic Boundary Value Problems, Van Nostrand Mathematical Studies 2. D. Van Nostrand, New York (1965). (1965) Zbl0142.37401MR0178246
- Amrouche, C., Seloula, N. El Houda, 10.7153/dea-03-36, Differ. Equ. Appl. 3 (2011), 581-607. (2011) Zbl1259.35092MR2918930DOI10.7153/dea-03-36
- Amrouche, C., Escobedo, M., Ghosh, A., Semigroup theory for the Stokes operator with Navier boundary condition in spaces, Available at https://arxiv.org/abs/1808.02001 (2018), 45 pages. (2018) MR4299328
- Amrouche, C., Girault, V., 10.21136/CMJ.1994.128452, Czech. Math. J. 44 (1994), 109-140. (1994) Zbl0823.35140MR1257940DOI10.21136/CMJ.1994.128452
- Beneš, M., Kučera, P., 10.1002/mana.201400046, Math. Nachr. 289 (2016), 194-212. (2016) Zbl1381.35116MR3458302DOI10.1002/mana.201400046
- Bruneau, C.-H., Fabrie, P., 10.1051/m2an/1996300708151, RAIRO, Modélisation Math. Anal. Numér. 30 (1996), 815-840. (1996) Zbl0865.76016MR1423081DOI10.1051/m2an/1996300708151
- Chen, G., Osborne, D., Qian, Z., 10.1016/S0252-9602(09)60078-3, Acta Math. Sci., Ser. B, Engl. Ed. 29 (2009), 919-948. (2009) Zbl1212.35346MR2509999DOI10.1016/S0252-9602(09)60078-3
- Chen, G.-Q., Qian, Z., 10.1512/iumj.2010.59.3898, Indiana Univ. Math. J. 59 (2010), 721-760. (2010) Zbl1206.35193MR2648084DOI10.1512/iumj.2010.59.3898
- Dauge, M., 10.1137/0520006, SIAM J. Math. Anal. 20 (1989), 74-97. (1989) Zbl0681.35071MR0977489DOI10.1137/0520006
- Feistauer, M., Felcman, J., Dolejší, V., 10.1002/zamm.19960761422, Z. Angew. Math. Mech. 76 (1996), 297-300. (1996) Zbl0925.76443DOI10.1002/zamm.19960761422
- Feistauer, M., Neustupa, T., 10.1007/978-3-0348-7926-2_29, Operator Theoretical Methods and Applications to Mathematical Physics Operator Theory: Advances and Applications 147. Birkhäuser, Basel (2004), 257-276. (2004) Zbl1054.35051MR2053693DOI10.1007/978-3-0348-7926-2_29
- Feistauer, M., Neustupa, T., 10.1002/mma.755, Math. Methods Appl. Sci. 29 (2006), 1907-1941. (2006) Zbl1124.35054MR2259990DOI10.1002/mma.755
- Feistauer, M., Neustupa, T., 10.1007/s00021-013-0135-4, J. Math. Fluid Mech. 15 (2013), 701-715. (2013) Zbl1293.35204MR3127015DOI10.1007/s00021-013-0135-4
- Galdi, G. P., 10.1007/978-0-387-09620-9, Springer Monographs in Mathematics. Springer, New York (2011). (2011) Zbl1245.35002MR2808162DOI10.1007/978-0-387-09620-9
- Glowinski, R., 10.1007/978-3-662-12613-4, Springer Series in Computational Physics. Springer, New York (1984). (1984) Zbl0536.65054MR0737005DOI10.1007/978-3-662-12613-4
- Grisvard, P., Singularités des solutions du probléme de Stokes dans un polygone, Université de Nice, Nice (1979), preprint French.
- Grisvard, P., 10.1137/1.9781611972030, Monographs and Studies in Mathematics 24. Pitman, Boston (1985). (1985) Zbl0695.35060MR0775683DOI10.1137/1.9781611972030
- Heywood, J. G., Rannacher, R., Turek, S., 10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y, Int. J. Numer. Methods Fluids 22 (1996), 325-352. (1996) Zbl0863.76016MR1380844DOI10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y
- Kato, T., Mitrea, M., Ponce, G., Taylor, M., 10.4310/MRL.2000.v7.n5.a10, Math. Res. Lett. 7 (2000), 643-650. (2000) Zbl0980.53022MR1809290DOI10.4310/MRL.2000.v7.n5.a10
- Kellogg, R. B., Osborn, J. E., 10.1016/0022-1236(76)90035-5, J. Func. Anal. 21 (1976), 397-431. (1976) Zbl0317.35037MR0404849DOI10.1016/0022-1236(76)90035-5
- Kozel, K., Louda, P., Příhoda, J., 10.1002/pamm.200610352, Proc. Appl. Math. Mech. 6 (2006), 743-744. (2006) DOI10.1002/pamm.200610352
- Kračmar, S., Neustupa, J., Modelling of flows of a viscous incompressible fluid through a channel by means of variational inequalities, Z. Angew. Math. Mech. 74 (1994), T637--T639. (1994) Zbl0836.35121
- Kračmar, S., Neustupa, J., 10.1016/S0362-546X(01)00534-X, Nonlinear Anal., Theory Methods Appl. 47 (2001), 4169-4180. (2001) Zbl1042.35605MR1972357DOI10.1016/S0362-546X(01)00534-X
- Kračmar, S., Neustupa, J., 10.1002/mana.201700228, Math. Nachr. 291 (2018), 1801-1814. (2018) Zbl1401.35239MR3844807DOI10.1002/mana.201700228
- Kučera, P., 10.1007/s11565-009-0082-4, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 55 (2009), 289-308. (2009) Zbl1205.35198MR2563661DOI10.1007/s11565-009-0082-4
- Kučera, P., Skalák, Z., 10.1023/A:1006185601807, Acta Appl. Math. 54 (1998), 275-288. (1998) Zbl0924.35097MR1671783DOI10.1023/A:1006185601807
- Ladyzhenskaya, O. A., The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Science Publishers, New York (1969). (1969) Zbl0184.52603MR0254401
- Medková, D., 10.1016/j.jde.2016.08.007, J. Differ. Equations 261 (2016), 5670-5689. (2016) Zbl1356.35181MR3548266DOI10.1016/j.jde.2016.08.007
- Medková, D., 10.1515/anly-2018-0035, Analysis, München 40 (2020), 1-17. (2020) Zbl1437.35586MR4069875DOI10.1515/anly-2018-0035
- Neustupa, T., 10.1007/978-3-642-00464-3_49, Numerical Analysis and Its Applications Lecture Notes in Computer Science 5434. Springer, Berlin (2009), 431-438. (2009) Zbl1233.35159DOI10.1007/978-3-642-00464-3_49
- Neustupa, T., 10.1016/j.amc.2011.05.020, Appl. Math. Comput. 219 (2012), 3316-3322. (2012) Zbl1309.76054MR2993903DOI10.1016/j.amc.2011.05.020
- Neustupa, T., 10.1016/j.amc.2015.05.066, Appl. Math. Comput. 272 (2016), 687-691. (2016) Zbl1410.35098MR3423376DOI10.1016/j.amc.2015.05.066
- Neustupa, T., The weak Stokes problem associated with a flow through a profile cascade in -framework, Available at https://arxiv.org/abs/2009.08234v2 (2020), 20 pages. (2020) MR4553623
- Neustupa, T., 10.1007/s10440-021-00396-4, Acta Appl. Math. 172 (2021), Article ID 3, 23 pages. (2021) Zbl1471.35220MR4220789DOI10.1007/s10440-021-00396-4
- Sohr, H., 10.1007/978-3-0348-8255-2, Birkhäuser Advanced Texts. Birkhäuser, Basel (2001). (2001) Zbl0983.35004MR1928881DOI10.1007/978-3-0348-8255-2
- Straka, P., Příhoda, J., Kožíšek, M., Fürst, J., 10.1051/epjconf/201714302118, EPJ Web Conf. 143 (2017), Article ID 02118, 6 pages. (2017) DOI10.1051/epjconf/201714302118
- Temam, R., Navier-Stokes Equations: Theory and Numerical Analysis, Studies in Mathematics and Its Applications 2. North-Holland, Amsterdam (1977). (1977) Zbl0383.35057MR0609732
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.