The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The maximum regularity property of the steady Stokes problem associated with a flow through a profile cascade in L r -framework”

Asymptotic behavior of small-data solutions to a Keller-Segel-Navier-Stokes system with indirect signal production

Lu Yang, Xi Liu, Zhibo Hou (2023)

Czechoslovak Mathematical Journal

Similarity:

We consider the Keller-Segel-Navier-Stokes system n t + 𝐮 · n = Δ n - · ( n v ) , x Ω , t > 0 , v t + 𝐮 · v = Δ v - v + w , x Ω , t > 0 , w t + 𝐮 · w = Δ w - w + n , x Ω , t > 0 , 𝐮 t + ( 𝐮 · ) 𝐮 = Δ 𝐮 + P + n φ , · 𝐮 = 0 , x Ω , t > 0 , which is considered in bounded domain Ω N ( N { 2 , 3 } ) with smooth boundary, where φ C 1 + δ ( Ω ¯ ) with δ ( 0 , 1 ) . We show that if the initial data n 0 L N / 2 ( Ω ) , v 0 L N ( Ω ) , w 0 L N ( Ω ) and 𝐮 0 L N ( Ω ) is small enough, an associated initial-boundary value problem possesses a global classical solution which decays to the constant state ( n ¯ 0 , n ¯ 0 , n ¯ 0 , 0 ) exponentially with n ¯ 0 : = ( 1 / | Ω | ) Ω n 0 ( x ) d x .

On the existence of steady-state solutions to the Navier-Stokes system for large fluxes

Antonio Russo, Giulio Starita (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

In this paper we deal with the stationary Navier-Stokes problem in a domain Ω with compact Lipschitz boundary Ω and datum a in Lebesgue spaces. We prove existence of a solution for arbitrary values of the fluxes through the connected components of Ω , with possible countable exceptional set, provided a is the sum of the gradient of a harmonic function and a sufficiently small field, with zero total flux for Ω bounded.

Profile decomposition for solutions of the Navier-Stokes equations

Isabelle Gallagher (2001)

Bulletin de la Société Mathématique de France

Similarity:

We consider sequences of solutions of the Navier-Stokes equations in  3 , associated with sequences of initial data bounded in  H ˙ 1 / 2 . We prove, in the spirit of the work of H.Bahouri and P.Gérard (in the case of the wave equation), that they can be decomposed into a sum of orthogonal profiles, bounded in  H ˙ 1 / 2 , up to a remainder term small in  L 3 ; the method is based on the proof of a similar result for the heat equation, followed by a perturbation–type argument. If  𝒜 is an “admissible” space (in...

A blow-up criterion for the strong solutions to the nonhomogeneous Navier-Stokes-Korteweg equations in dimension three

Huanyuan Li (2021)

Applications of Mathematics

Similarity:

This paper proves a Serrin’s type blow-up criterion for the 3D density-dependent Navier-Stokes-Korteweg equations with vacuum. It is shown that if the density ρ and velocity field u satisfy ρ L ( 0 , T ; W 1 , q ) + u L s ( 0 , T ; L ω r ) < for some q > 3 and any ( r , s ) satisfying 2 / s + 3 / r 1 , 3 < r , then the strong solutions to the density-dependent Navier-Stokes-Korteweg equations can exist globally over [ 0 , T ] . Here L ω r denotes the weak L r space.

Local well-posedness of solutions to 2D magnetic Prandtl model in the Prandtl-Hartmann regime

Yuming Qin, Xiuqing Wang, Junchen Liu (2025)

Applications of Mathematics

Similarity:

We consider the 2D magnetic Prandtl equation in the Prandtl-Hartmann regime in a periodic domain and prove the local existence and uniqueness of solutions by energy methods in a polynomial weighted Sobolev space. On the one hand, we have noted that the x -derivative of the pressure P plays a key role in all known results on the existence and uniqueness of solutions to the Prandtl-Hartmann regime equations, in which the case of favorable P ( x P < 0 ) or the case of x P = 0 (led by constant...

A short note on L q theory for Stokes problem with a pressure-dependent viscosity

Václav Mácha (2016)

Czechoslovak Mathematical Journal

Similarity:

We study higher local integrability of a weak solution to the steady Stokes problem. We consider the case of a pressure- and shear-rate-dependent viscosity, i.e., the elliptic part of the Stokes problem is assumed to be nonlinear and it depends on p and on the symmetric part of a gradient of u , namely, it is represented by a stress tensor T ( D u , p ) : = ν ( p , | D | 2 ) D which satisfies r -growth condition with r ( 1 , 2 ] . In order to get the main result, we use Calderón-Zygmund theory and the method which was presented for...

Local-in-time existence for the non-resistive incompressible magneto-micropolar fluids

Peixin Zhang, Mingxuan Zhu (2022)

Applications of Mathematics

Similarity:

We establish the local-in-time existence of a solution to the non-resistive magneto-micropolar fluids with the initial data u 0 H s - 1 + ε , w 0 H s - 1 and b 0 H s for s > 3 2 and any 0 < ε < 1 . The initial regularity of the micro-rotational velocity w is weaker than velocity of the fluid u .

An improved regularity criteria for the MHD system based on two components of the solution

Zujin Zhang, Yali Zhang (2021)

Applications of Mathematics

Similarity:

As observed by Yamazaki, the third component b 3 of the magnetic field can be estimated by the corresponding component u 3 of the velocity field in L λ ( 2 λ 6 ) norm. This leads him to establish regularity criterion involving u 3 , j 3 or u 3 , ω 3 . Noticing that λ can be greater than 6 in this paper, we can improve previous results.

On the existence of solutions for the nonstationary Stokes system with slip boundary conditions in general Sobolev-Slobodetskii and Besov spaces

Wisam Alame (2005)

Banach Center Publications

Similarity:

We prove the existence of solutions to the evolutionary Stokes system in a bounded domain Ω ⊂ ℝ³. The main result shows that the velocity belongs either to W p 2 s + 2 , s + 1 ( Ω T ) or to B p , q 2 s + 2 , s + 1 ( Ω T ) with p > 3 and s ∈ ℝ₊ ∪ 0. The proof is divided into two steps. First the existence in W p 2 k + 2 , k + 1 for k ∈ ℕ is proved. Next applying interpolation theory the existence in Besov spaces in a half space is shown. Finally the technique of regularizers implies the existence in a bounded domain. The result is generalized to the spaces...

Vectorial quasilinear diffusion equation with dynamic boundary condition

Nakayashiki, Ryota

Similarity:

In this paper, we consider a class of initial-boundary value problems for quasilinear PDEs, subject to the dynamic boundary conditions. Each initial-boundary problem is denoted by (S) ε with a nonnegative constant ε , and for any ε 0 , (S) ε can be regarded as a vectorial transmission system between the quasilinear equation in the spatial domain Ω , and the parabolic equation on the boundary Γ : = Ω , having a sufficient smoothness. The objective of this study is to establish a mathematical method,...

Positivity and anti-maximum principles for elliptic operators with mixed boundary conditions

Catherine Bandle, Joachim von Below, Wolfgang Reichel (2008)

Journal of the European Mathematical Society

Similarity:

We consider linear elliptic equations - Δ u + q ( x ) u = λ u + f in bounded Lipschitz domains D N with mixed boundary conditions u / n = σ ( x ) λ u + g on D . The main feature of this boundary value problem is the appearance of λ both in the equation and in the boundary condition. In general we make no assumption on the sign of the coefficient σ ( x ) . We study positivity principles and anti-maximum principles. One of our main results states that if σ is somewhere negative, q 0 and D q ( x ) d x > 0 then there exist two eigenvalues λ - 1 , λ 1 such the positivity...

Some theorems of Korovkin type

Tomoko Hachiro, Takateru Okayasu (2003)

Studia Mathematica

Similarity:

We take another approach to the well known theorem of Korovkin, in the following situation: X, Y are compact Hausdorff spaces, M is a unital subspace of the Banach space C(X) (respectively, C ( X ) ) of all complex-valued (resp., real-valued) continuous functions on X, S ⊂ M a complex (resp., real) function space on X, ϕₙ a sequence of unital linear contractions from M into C(Y) (resp., C ( Y ) ), and ϕ a linear isometry from M into C(Y) (resp., C ( Y ) ). We show, under the assumption that Π N Π T , where Π N is...

A symmetry problem in the calculus of variations

Graziano Crasta (2006)

Journal of the European Mathematical Society

Similarity:

We consider the integral functional J ( u ) = Ω [ f ( | D u | ) u ] d x , u W 0 1 , 1 ( Ω ) , where Ω n , n 2 , is a nonempty bounded connected open subset of n with smooth boundary, and s f ( | s | ) is a convex, differentiable function. We prove that if J admits a minimizer in W 0 1 , 1 ( Ω ) depending only on the distance from the boundary of Ω , then Ω must be a ball.

Cobham's theorem for substitutions

Fabien Durand (2011)

Journal of the European Mathematical Society

Similarity:

The seminal theorem of Cobham has given rise during the last 40 years to a lot of work about non-standard numeration systems and has been extended to many contexts. In this paper, as a result of fifteen years of improvements, we obtain a complete and general version for the so-called substitutive sequences. Let α and β be two multiplicatively independent Perron numbers. Then a sequence x A , where A is a finite alphabet, is both α -substitutive and β -substitutive if and only if x is ultimately...

𝒞 k -regularity for the ¯ -equation with a support condition

Shaban Khidr, Osama Abdelkader (2017)

Czechoslovak Mathematical Journal

Similarity:

Let D be a 𝒞 d q -convex intersection, d 2 , 0 q n - 1 , in a complex manifold X of complex dimension n , n 2 , and let E be a holomorphic vector bundle of rank N over X . In this paper, 𝒞 k -estimates, k = 2 , 3 , , , for solutions to the ¯ -equation with small loss of smoothness are obtained for E -valued ( 0 , s ) -forms on D when n - q s n . In addition, we solve the ¯ -equation with a support condition in 𝒞 k -spaces. More precisely, we prove that for a ¯ -closed form f in 𝒞 0 , q k ( X D , E ) , 1 q n - 2 , n 3 , with compact support and for ε with 0 < ε < 1 there...

Curved thin domains and parabolic equations

M. Prizzi, M. Rinaldi, K. P. Rybakowski (2002)

Studia Mathematica

Similarity:

Consider the family uₜ = Δu + G(u), t > 0, x Ω ε , ν ε u = 0 , t > 0, x Ω ε , ( E ε ) of semilinear Neumann boundary value problems, where, for ε > 0 small, the set Ω ε is a thin domain in l , possibly with holes, which collapses, as ε → 0⁺, onto a (curved) k-dimensional submanifold of l . If G is dissipative, then equation ( E ε ) has a global attractor ε . We identify a “limit” equation for the family ( E ε ) , prove convergence of trajectories and establish an upper semicontinuity result for the family ε as ε → 0⁺. ...

Perron-Frobenius operators and the Klein-Gordon equation

Francisco Canto-Martín, Håkan Hedenmalm, Alfonso Montes-Rodríguez (2014)

Journal of the European Mathematical Society

Similarity:

For a smooth curve Γ and a set Λ in the plane 2 , let A C ( Γ ; Λ ) be the space of finite Borel measures in the plane supported on Γ , absolutely continuous with respect to the arc length and whose Fourier transform vanishes on Λ . Following [12], we say that ( Γ , Λ ) is a Heisenberg uniqueness pair if A C ( Γ ; Λ ) = { 0 } . In the context of a hyperbola Γ , the study of Heisenberg uniqueness pairs is the same as looking for uniqueness sets Λ of a collection of solutions to the Klein-Gordon equation. In this work, we mainly...