New efficient boundary conditions for incompressible Navier-Stokes equations : a well-posedness result
- Volume: 30, Issue: 7, page 815-840
 - ISSN: 0764-583X
 
Access Full Article
topHow to cite
topBruneau, C.-H., and Fabrie, P.. "New efficient boundary conditions for incompressible Navier-Stokes equations : a well-posedness result." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 30.7 (1996): 815-840. <http://eudml.org/doc/193825>.
@article{Bruneau1996,
	author = {Bruneau, C.-H., Fabrie, P.},
	journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
	keywords = {flow behind obstacle channel; energy estimates; open boundaries; weak formulation; mixed formulation; existence},
	language = {eng},
	number = {7},
	pages = {815-840},
	publisher = {Dunod},
	title = {New efficient boundary conditions for incompressible Navier-Stokes equations : a well-posedness result},
	url = {http://eudml.org/doc/193825},
	volume = {30},
	year = {1996},
}
TY  - JOUR
AU  - Bruneau, C.-H.
AU  - Fabrie, P.
TI  - New efficient boundary conditions for incompressible Navier-Stokes equations : a well-posedness result
JO  - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY  - 1996
PB  - Dunod
VL  - 30
IS  - 7
SP  - 815
EP  - 840
LA  - eng
KW  - flow behind obstacle channel; energy estimates; open boundaries; weak formulation; mixed formulation; existence
UR  - http://eudml.org/doc/193825
ER  - 
References
top- [1] R. A. ADAMS, 1975, Sobolev spaces, Academic press, New-York. Zbl0314.46030MR450957
 - [2] C. BÈGUE, C. CONCA, F. MURAT and O. PIRONNEAU, 1987, A nouveau sur les équations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression, C. R. Acad. Sci. Parts, 304 série I, pp. 23-28. Zbl0613.76029MR878818
 - [3] Ch.-H. BRUNEAU and P. FABRIE, 1994, Effective downstream boundary conditions for incompressible Navier-Stokes equations. Int. J. for Num. Methods in Fluids, 19, pp. 693-705. Zbl0816.76024
 - [4] C. CONCA, 1984, Approximation de quelques problèmes de type Stokes par une méthode d'éléments finis mixtes. Numer. Math., 45, pp. 75-91. Zbl0523.34009MR761881
 - [5] G. DUVAUD, J. L. LIONS, 1972, Les inéquations en mécanique et en physique, Dunod. Zbl0298.73001MR464857
 - [6] V. GlRAULT et P. A. RAVIART, 1986, Finite elements method for Navier Stokes equations, Springer Series in Computational Mathematics. MR851383
 - [7] P. M. GRESHO, 1991, Incompressible fluid dynamics: Some fundamental formulation issues. Annu. Rev. Fluid Mech., 23, pp. 413-453. Zbl0717.76006MR1090333
 - [8] L. HALPERN, 1986, Artificial boundary conditions for the linear advection diffusion equation, Math. Comp., 46, pp. 425-438. Zbl0649.35041MR829617
 - [9] L. HALPERN and M. SCHATZMAN, 1989, Artificial boundary conditions for incompressible viscous flows. SIAM J. Math. Anal., 20, pp. 308-353. Zbl0668.76048MR982662
 - [10] J. L. LIONS, 1979, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris. Zbl0189.40603
 - [11] R. PEYRET and B. REBOURCET, 1982, Développement de jets en fluides stratifiés, Journal de Mécanique Théorique et Appliquée, 1, pp. 467-491. Zbl0543.76014
 - [12] O. PIRONNEAU, 1986, Conditions aux limites sur la pression pour les équations de Stokes et de Navier-Stokes, C. R. Acad. Sci. Paris, 303, série I, pp. 403-40. Zbl0613.76028MR862203
 - [13] R. TEMAM, 1993, Navier-Stokes Equations and Nonlinear Functional Analysis, Regional conference series in applied mathematics. Zbl0833.35110
 - [14] R. TEMAM, 1979, Navier-Stokes Equations and numencal Analysis, 2nd ed. North-Holland, Amsterdam. Zbl0426.35003MR603444
 
Citations in EuDML Documents
top- Charles-Henri Bruneau, Boundary conditions on artificial frontiers for incompressible and compressible Navier-Stokes equations
 - Charles-Henri Bruneau, Boundary conditions on artificial frontiers for incompressible and compressible Navier-Stokes equations
 - Tomáš Neustupa, The maximum regularity property of the steady Stokes problem associated with a flow through a profile cascade in -framework
 - Paul Deuring, Stability of a finite element method for 3D exterior stationary Navier-Stokes flows
 - Martin Lanzendörfer, Jan Stebel, On pressure boundary conditions for steady flows of incompressible fluids with pressure and shear rate dependent viscosities
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.