New efficient boundary conditions for incompressible Navier-Stokes equations : a well-posedness result

C.-H. Bruneau; P. Fabrie

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1996)

  • Volume: 30, Issue: 7, page 815-840
  • ISSN: 0764-583X

How to cite

top

Bruneau, C.-H., and Fabrie, P.. "New efficient boundary conditions for incompressible Navier-Stokes equations : a well-posedness result." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 30.7 (1996): 815-840. <http://eudml.org/doc/193825>.

@article{Bruneau1996,
author = {Bruneau, C.-H., Fabrie, P.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {flow behind obstacle channel; energy estimates; open boundaries; weak formulation; mixed formulation; existence},
language = {eng},
number = {7},
pages = {815-840},
publisher = {Dunod},
title = {New efficient boundary conditions for incompressible Navier-Stokes equations : a well-posedness result},
url = {http://eudml.org/doc/193825},
volume = {30},
year = {1996},
}

TY - JOUR
AU - Bruneau, C.-H.
AU - Fabrie, P.
TI - New efficient boundary conditions for incompressible Navier-Stokes equations : a well-posedness result
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1996
PB - Dunod
VL - 30
IS - 7
SP - 815
EP - 840
LA - eng
KW - flow behind obstacle channel; energy estimates; open boundaries; weak formulation; mixed formulation; existence
UR - http://eudml.org/doc/193825
ER -

References

top
  1. [1] R. A. ADAMS, 1975, Sobolev spaces, Academic press, New-York. Zbl0314.46030MR450957
  2. [2] C. BÈGUE, C. CONCA, F. MURAT and O. PIRONNEAU, 1987, A nouveau sur les équations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression, C. R. Acad. Sci. Parts, 304 série I, pp. 23-28. Zbl0613.76029MR878818
  3. [3] Ch.-H. BRUNEAU and P. FABRIE, 1994, Effective downstream boundary conditions for incompressible Navier-Stokes equations. Int. J. for Num. Methods in Fluids, 19, pp. 693-705. Zbl0816.76024
  4. [4] C. CONCA, 1984, Approximation de quelques problèmes de type Stokes par une méthode d'éléments finis mixtes. Numer. Math., 45, pp. 75-91. Zbl0523.34009MR761881
  5. [5] G. DUVAUD, J. L. LIONS, 1972, Les inéquations en mécanique et en physique, Dunod. Zbl0298.73001MR464857
  6. [6] V. GlRAULT et P. A. RAVIART, 1986, Finite elements method for Navier Stokes equations, Springer Series in Computational Mathematics. MR851383
  7. [7] P. M. GRESHO, 1991, Incompressible fluid dynamics: Some fundamental formulation issues. Annu. Rev. Fluid Mech., 23, pp. 413-453. Zbl0717.76006MR1090333
  8. [8] L. HALPERN, 1986, Artificial boundary conditions for the linear advection diffusion equation, Math. Comp., 46, pp. 425-438. Zbl0649.35041MR829617
  9. [9] L. HALPERN and M. SCHATZMAN, 1989, Artificial boundary conditions for incompressible viscous flows. SIAM J. Math. Anal., 20, pp. 308-353. Zbl0668.76048MR982662
  10. [10] J. L. LIONS, 1979, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris. Zbl0189.40603
  11. [11] R. PEYRET and B. REBOURCET, 1982, Développement de jets en fluides stratifiés, Journal de Mécanique Théorique et Appliquée, 1, pp. 467-491. Zbl0543.76014
  12. [12] O. PIRONNEAU, 1986, Conditions aux limites sur la pression pour les équations de Stokes et de Navier-Stokes, C. R. Acad. Sci. Paris, 303, série I, pp. 403-40. Zbl0613.76028MR862203
  13. [13] R. TEMAM, 1993, Navier-Stokes Equations and Nonlinear Functional Analysis, Regional conference series in applied mathematics. Zbl0833.35110
  14. [14] R. TEMAM, 1979, Navier-Stokes Equations and numencal Analysis, 2nd ed. North-Holland, Amsterdam. Zbl0426.35003MR603444

Citations in EuDML Documents

top
  1. Charles-Henri Bruneau, Boundary conditions on artificial frontiers for incompressible and compressible Navier-Stokes equations
  2. Charles-Henri Bruneau, Boundary conditions on artificial frontiers for incompressible and compressible Navier-Stokes equations
  3. Tomáš Neustupa, The maximum regularity property of the steady Stokes problem associated with a flow through a profile cascade in L r -framework
  4. Paul Deuring, Stability of a finite element method for 3D exterior stationary Navier-Stokes flows
  5. Martin Lanzendörfer, Jan Stebel, On pressure boundary conditions for steady flows of incompressible fluids with pressure and shear rate dependent viscosities

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.