A framework to combine vector-valued metrics into a scalar-metric: Application to data comparison

Gemma Piella

Applications of Mathematics (2023)

  • Volume: 68, Issue: 2, page 143-152
  • ISSN: 0862-7940

Abstract

top
Distance metrics are at the core of many processing and machine learning algorithms. In many contexts, it is useful to compute the distance between data using multiple criteria. This naturally leads to consider vector-valued metrics, in which the distance is no longer a real positive number but a vector. In this paper, we propose a principled way to combine several metrics into either a scalar-valued or vector-valued metric. We illustrate our framework by reformulating the popular structural similarity (SSIM) index and a simple case of the Wasserstein distance used for optimal transport.

How to cite

top

Piella, Gemma. "A framework to combine vector-valued metrics into a scalar-metric: Application to data comparison." Applications of Mathematics 68.2 (2023): 143-152. <http://eudml.org/doc/299515>.

@article{Piella2023,
abstract = {Distance metrics are at the core of many processing and machine learning algorithms. In many contexts, it is useful to compute the distance between data using multiple criteria. This naturally leads to consider vector-valued metrics, in which the distance is no longer a real positive number but a vector. In this paper, we propose a principled way to combine several metrics into either a scalar-valued or vector-valued metric. We illustrate our framework by reformulating the popular structural similarity (SSIM) index and a simple case of the Wasserstein distance used for optimal transport.},
author = {Piella, Gemma},
journal = {Applications of Mathematics},
keywords = {generalized metric; vector-valued metric; scalarization; image comparison; structural similarity index},
language = {eng},
number = {2},
pages = {143-152},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A framework to combine vector-valued metrics into a scalar-metric: Application to data comparison},
url = {http://eudml.org/doc/299515},
volume = {68},
year = {2023},
}

TY - JOUR
AU - Piella, Gemma
TI - A framework to combine vector-valued metrics into a scalar-metric: Application to data comparison
JO - Applications of Mathematics
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 2
SP - 143
EP - 152
AB - Distance metrics are at the core of many processing and machine learning algorithms. In many contexts, it is useful to compute the distance between data using multiple criteria. This naturally leads to consider vector-valued metrics, in which the distance is no longer a real positive number but a vector. In this paper, we propose a principled way to combine several metrics into either a scalar-valued or vector-valued metric. We illustrate our framework by reformulating the popular structural similarity (SSIM) index and a simple case of the Wasserstein distance used for optimal transport.
LA - eng
KW - generalized metric; vector-valued metric; scalarization; image comparison; structural similarity index
UR - http://eudml.org/doc/299515
ER -

References

top
  1. Amini-Harandi, A., Fakhar, M., 10.1016/j.camwa.2010.03.046, Comput. Math. Appl. 59 (2010), 3529-3534. (2010) Zbl1197.54055MR2646324DOI10.1016/j.camwa.2010.03.046
  2. Athar, S., Wang, Z., 10.1109/ACCESS.2019.2943319, IEEE Access 7 (2019), 140030-140070. (2019) DOI10.1109/ACCESS.2019.2943319
  3. Brunet, D., Vrscay, E. R., Wang, Z., 10.1109/TIP.2011.2173206, IEEE Trans. Image Process. 21 (2012), 1488-1499. (2012) Zbl1373.94051MR2959465DOI10.1109/TIP.2011.2173206
  4. Bures, D., 10.1090/S0002-9947-1969-0236719-2, Trans. Am. Math. Soc. 135 (1969), 199-212. (1969) Zbl0176.11402MR0236719DOI10.1090/S0002-9947-1969-0236719-2
  5. Chen, G.-H., Yang, C.-L., Xie, S.-L., 10.1109/ICIP.2006.313132, IEEE International Conference on Image Processing IEEE, Piscataway (2006), 2929-2932. (2006) DOI10.1109/ICIP.2006.313132
  6. Dosselmann, R., Yang, X. D., 10.1007/s11760-009-0144-1, Signal Image Video Process. 5 (2011), 81-91. (2011) DOI10.1007/s11760-009-0144-1
  7. Horé, A., Ziou, D., 10.1109/ICPR.2010.579, 20th International Conference on Pattern Recognition IEEE, Piscataway (2010), 2366-2369. (2010) DOI10.1109/ICPR.2010.579
  8. Huang, L.-G., Zhang, X., 10.1016/j.jmaa.2005.03.087, J. Math. Anal. Appl. 332 (2007), 1468-1476. (2007) Zbl1118.54022MR2324351DOI10.1016/j.jmaa.2005.03.087
  9. Kang, L., Ye, P., Li, Y., Doermann, D., 10.1109/CVPR.2014.224, IEEE Conference on Computer Vision and Pattern Recognition IEEE, Piscataway (2014), 1733-1740. (2014) DOI10.1109/CVPR.2014.224
  10. Khani, M., Pourmahdian, M., 10.1016/j.topol.2010.10.016, Topology Appl. 158 (2011), 190-193. (2011) Zbl1206.54026MR2739889DOI10.1016/j.topol.2010.10.016
  11. Li, C., Bovik, A. C., 10.1016/j.image.2010.03.004, Signal Process., Image Commun. 25 (2010), 517-526. (2010) DOI10.1016/j.image.2010.03.004
  12. Li, Y., Wang, G., Nie, L., Wang, Q., Tan, W., 10.1016/j.patcog.2017.10.015, Pattern Recognition 75 (2018), 51-62. (2018) DOI10.1016/j.patcog.2017.10.015
  13. Ma, Z., Zhou, S., Wu, X., Zhang, H., Yan, W., Sun, S., Zhou, J., 10.1088/1361-6560/aaf5da, Phys. Med. Biol. 64 (2019), Article ID 025005. (2019) DOI10.1088/1361-6560/aaf5da
  14. Villani, C., 10.1007/978-3-540-71050-9, Grundlehren der Mathematischen Wissenschaften 338. Springer, Berlin (2009). (2009) Zbl1156.53003MR2459454DOI10.1007/978-3-540-71050-9
  15. Wainwright, M. J., Schwartz, O., Simoncelli, E. P., Natural image statistics and divisive normalization, Probabilistic Models of the Brain: Perception and Neural Function MIT Press, Cambridge (2002), 203-222. (2002) 
  16. Wang, C., Peng, G., Baets, B. De, 10.1016/j.inffus.2020.05.005, Inf. Fusion 63 (2020), 1-12. (2020) DOI10.1016/j.inffus.2020.05.005
  17. Wang, Z., Bovik, A. C., 10.1109/97.995823, IEEE Signal Process. Lett. 9 (2002), 81-84. (2002) DOI10.1109/97.995823
  18. Wang, Z., Bovik, A. C., Lu, L., 10.1109/ICASSP.2002.5745362, IEEE International Conference on Acoustics, Speech, and Signal Processing IEEE, Piscataway (2002), IV-3313--IV-3316. (2002) MR0642901DOI10.1109/ICASSP.2002.5745362
  19. Wang, Z., Bovik, A. C., Sheikh, H. R., Simoncelli, E. P., 10.1109/TIP.2003.819861, IEEE Trans. Image Process. 13 (2004), 600-612. (2004) DOI10.1109/TIP.2003.819861
  20. Wang, Z., Simoncelli, E. P., Bovik, A. C., 10.1109/ACSSC.2003.1292216, 37th Asilomar Conference on Signals, Systems & Computers IEEE, Piscataway (2003), 1398-1402. (2003) DOI10.1109/ACSSC.2003.1292216
  21. Zhao, H., Gallo, O., Frosio, I., Kautz, J., 10.1109/TCI.2016.2644865, IEEE Trans. Comput. Imaging 3 (2017), 47-57. (2017) DOI10.1109/TCI.2016.2644865

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.