A penalty ADMM with quantized communication for distributed optimization over multi-agent systems

Chenyang Liu; Xiaohua Dou; Yuan Fan; Songsong Cheng

Kybernetika (2023)

  • Volume: 59, Issue: 3, page 392-417
  • ISSN: 0023-5954

Abstract

top
In this paper, we design a distributed penalty ADMM algorithm with quantized communication to solve distributed convex optimization problems over multi-agent systems. Firstly, we introduce a quantization scheme that reduces the bandwidth limitation of multi-agent systems without requiring an encoder or decoder, unlike existing quantized algorithms. This scheme also minimizes the computation burden. Moreover, with the aid of the quantization design, we propose a quantized penalty ADMM to obtain the suboptimal solution. Furthermore, the proposed algorithm converges to the suboptimal solution with an O ( 1 k ) convergence rate for general convex objective functions, and with an R-linear rate for strongly convex objective functions.

How to cite

top

Liu, Chenyang, et al. "A penalty ADMM with quantized communication for distributed optimization over multi-agent systems." Kybernetika 59.3 (2023): 392-417. <http://eudml.org/doc/299536>.

@article{Liu2023,
abstract = {In this paper, we design a distributed penalty ADMM algorithm with quantized communication to solve distributed convex optimization problems over multi-agent systems. Firstly, we introduce a quantization scheme that reduces the bandwidth limitation of multi-agent systems without requiring an encoder or decoder, unlike existing quantized algorithms. This scheme also minimizes the computation burden. Moreover, with the aid of the quantization design, we propose a quantized penalty ADMM to obtain the suboptimal solution. Furthermore, the proposed algorithm converges to the suboptimal solution with an $O(\frac\{1\}\{k\})$ convergence rate for general convex objective functions, and with an R-linear rate for strongly convex objective functions.},
author = {Liu, Chenyang, Dou, Xiaohua, Fan, Yuan, Cheng, Songsong},
journal = {Kybernetika},
keywords = {quantized communication; distributed optimization; alternating direction method of multipliers (ADMM); constrained optimization},
language = {eng},
number = {3},
pages = {392-417},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A penalty ADMM with quantized communication for distributed optimization over multi-agent systems},
url = {http://eudml.org/doc/299536},
volume = {59},
year = {2023},
}

TY - JOUR
AU - Liu, Chenyang
AU - Dou, Xiaohua
AU - Fan, Yuan
AU - Cheng, Songsong
TI - A penalty ADMM with quantized communication for distributed optimization over multi-agent systems
JO - Kybernetika
PY - 2023
PB - Institute of Information Theory and Automation AS CR
VL - 59
IS - 3
SP - 392
EP - 417
AB - In this paper, we design a distributed penalty ADMM algorithm with quantized communication to solve distributed convex optimization problems over multi-agent systems. Firstly, we introduce a quantization scheme that reduces the bandwidth limitation of multi-agent systems without requiring an encoder or decoder, unlike existing quantized algorithms. This scheme also minimizes the computation burden. Moreover, with the aid of the quantization design, we propose a quantized penalty ADMM to obtain the suboptimal solution. Furthermore, the proposed algorithm converges to the suboptimal solution with an $O(\frac{1}{k})$ convergence rate for general convex objective functions, and with an R-linear rate for strongly convex objective functions.
LA - eng
KW - quantized communication; distributed optimization; alternating direction method of multipliers (ADMM); constrained optimization
UR - http://eudml.org/doc/299536
ER -

References

top
  1. Alghunaim, S. A., Ryu, E. K., Yuan, K., Sayed, A. H., , IEEE Trans. Automat. Control 66 (2020), 6, 2787-2794. MR4265114DOI
  2. Boyd, S., Persi, D., Xiao, L., , SIAM Rev. 46 (2004), 4, 667-689. MR2124681DOI
  3. Chen, Z., Liang, S., , Kybernetika 58 (2022), 1, 123-144. MR4405950DOI
  4. Chen, Z., Ma, J., Liang, S., Li, L., , Automatica 141 (2022), 110318. MR4409952DOI
  5. Cheng, S., Liang, S., Fan, Y., Hong, Y., , IEEE Trans. Automat. Control (2022). MR4596660DOI
  6. Dorina, T., Effrosyni, K., Pu, Y., Pascal, F., , IEEE Trans. Signal Process. 61 (2013), 1, 194-205. MR3008630DOI
  7. Jian, L., Hu, J., Wang, J., Shi, K., , Optimal Control Appl. Methods 40 (2019), 6, 1071-1087. MR4028355DOI
  8. Lei, J., Chen, H., Fang, H., , Systems Control Lett. 96 (2016), 110-117. MR3547663DOI
  9. Lei, J., Yi, P., Shi, G., Brian, D. O. A., , SIAM J. Optim. 30 (2020), 2, 1191-1222. MR4091883DOI
  10. Li, X., Feng, G., Xie, L., , IEEE Trans. Automat. Control 66 (2021), 3, 1223-1230. MR4226768DOI
  11. Li, X., Gang, F., Lihua, X., 10.1109/ICCA.2019.8899938, 2019 IEEE 15th International Conference on Control and Automation (ICCA), IEEE, (2019), 824-829. DOI10.1109/ICCA.2019.8899938
  12. Li, P., Hu, J., Qiu, L., Zhao, Y., Bijoy, K. G., , IEEE Trans. Control Network Systems 9 (2022), 1, 356-366. MR4450544DOI
  13. Li, W., Zeng, X., Liang, S., Hong, Y., 10.1109/TAC.2021.3075666, IEEE Trans. Automat. Control 67 (2022), 2, 934-940. MR4376129DOI10.1109/TAC.2021.3075666
  14. Liang, S., Wang, L., George, Y., , Automatica 105 (2019), 298-306. MR3942714DOI
  15. Liu, Y., Wu, G., Tian, Z., Ling, Q., , IEEE Trans. Neural Networks Learn. Systems 33 (2022), 8, 3290-3304. MR4468237DOI
  16. Ma, S., , J. Scientific Computing 68 (2016), 2, 546-572. MR3519192DOI
  17. Ma, X., Yi, P., Chen, J., , J. Systems Science Complexity 34 (2021), 5, 1927-1952. MR4331654DOI
  18. Pillai, S. U., Torsten, S., Seunghun, Ch., , IEEE Signal Process. Magazine 22 (2005), 2, 62-75. DOI
  19. Qiu, Z., Xie, L., Hong, Y., , IEEE Trans. Automat. Control 61 (2016), 9, 2432-2447. MR3545063DOI
  20. Shi, W., Ling, Q., Yuan, K., Wu, G., Yin, W., , IEEE Trans. Signal Process. 62 (2014), 7, 1750-1761. MR3189404DOI
  21. Wang, C., Xu, S., Yuan, D., Zhang, B., Zhang, Z., , Neurocomputing 497 (2022), 204-215. DOI
  22. Wang, J., Fu, L., Gu, Y., Li, T., , J. Systems Science Complexity 34 (2021), 4, 1438-1453. MR4298058DOI
  23. Wei, Y., Fang, H., Zeng, X., Chen, J., Panos, P., , IEEE Trans. Automat. Control 65 (2020), 4, 1800-1806. MR4085556DOI
  24. Xie, X., Ling, Q., Lu, P., Xu, W., Zhu, Z., , IEEE Trans. Parallel Distributed Systems 29 (2018), 5, 1058-1074. DOI
  25. Xu, T., Wu, W., , IEEE Trans. Industr. Inform. 16 (2020), 12, 7532-7543. DOI
  26. Yi, P., Hong, Y., , IEEE Trans. Contro Network Systems 1 (2014), 4, 380-392. MR3303147DOI
  27. Yu, W., Liu, H., Zheng, W. Z., Zhu, Y., , Automatica 134 (2021), 11, 109899. MR4309380DOI
  28. Yuan, D., Hong, Y., Daniel, W. C. H., Xu, S., , IEEE Trans. Automat. Control 66 (2021), 2, 714-729. MR4210454DOI
  29. Yuan, D., Xu, S., Zhang, B., Rong, L., , Int. J. Robust Nonlinear Control 23 (2013), 15, 1846-1868. MR3126782DOI
  30. Zhang, J., Liu, H., Anthony, M.-Ch. S., Man-Cho, Ling, Q., 10.1109/TSP.2021.3092347, IEEE Trans. Signal Process. 69 (2021), 4282-4295. MR4302986DOI10.1109/TSP.2021.3092347
  31. Zhao, X., Yi, P., Li, L., , Control Theory Technol. 18 (2020), 4, 362-378. MR4188357DOI
  32. Zhou, H., Zeng, X., Hong, Y., , IEEE Trans. Automat. Control 64 (2019), 11, 4661-4667. MR4030790DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.