A penalty ADMM with quantized communication for distributed optimization over multi-agent systems
Chenyang Liu; Xiaohua Dou; Yuan Fan; Songsong Cheng
Kybernetika (2023)
- Volume: 59, Issue: 3, page 392-417
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topLiu, Chenyang, et al. "A penalty ADMM with quantized communication for distributed optimization over multi-agent systems." Kybernetika 59.3 (2023): 392-417. <http://eudml.org/doc/299536>.
@article{Liu2023,
abstract = {In this paper, we design a distributed penalty ADMM algorithm with quantized communication to solve distributed convex optimization problems over multi-agent systems. Firstly, we introduce a quantization scheme that reduces the bandwidth limitation of multi-agent systems without requiring an encoder or decoder, unlike existing quantized algorithms. This scheme also minimizes the computation burden. Moreover, with the aid of the quantization design, we propose a quantized penalty ADMM to obtain the suboptimal solution. Furthermore, the proposed algorithm converges to the suboptimal solution with an $O(\frac\{1\}\{k\})$ convergence rate for general convex objective functions, and with an R-linear rate for strongly convex objective functions.},
author = {Liu, Chenyang, Dou, Xiaohua, Fan, Yuan, Cheng, Songsong},
journal = {Kybernetika},
keywords = {quantized communication; distributed optimization; alternating direction method of multipliers (ADMM); constrained optimization},
language = {eng},
number = {3},
pages = {392-417},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A penalty ADMM with quantized communication for distributed optimization over multi-agent systems},
url = {http://eudml.org/doc/299536},
volume = {59},
year = {2023},
}
TY - JOUR
AU - Liu, Chenyang
AU - Dou, Xiaohua
AU - Fan, Yuan
AU - Cheng, Songsong
TI - A penalty ADMM with quantized communication for distributed optimization over multi-agent systems
JO - Kybernetika
PY - 2023
PB - Institute of Information Theory and Automation AS CR
VL - 59
IS - 3
SP - 392
EP - 417
AB - In this paper, we design a distributed penalty ADMM algorithm with quantized communication to solve distributed convex optimization problems over multi-agent systems. Firstly, we introduce a quantization scheme that reduces the bandwidth limitation of multi-agent systems without requiring an encoder or decoder, unlike existing quantized algorithms. This scheme also minimizes the computation burden. Moreover, with the aid of the quantization design, we propose a quantized penalty ADMM to obtain the suboptimal solution. Furthermore, the proposed algorithm converges to the suboptimal solution with an $O(\frac{1}{k})$ convergence rate for general convex objective functions, and with an R-linear rate for strongly convex objective functions.
LA - eng
KW - quantized communication; distributed optimization; alternating direction method of multipliers (ADMM); constrained optimization
UR - http://eudml.org/doc/299536
ER -
References
top- Alghunaim, S. A., Ryu, E. K., Yuan, K., Sayed, A. H., , IEEE Trans. Automat. Control 66 (2020), 6, 2787-2794. MR4265114DOI
- Boyd, S., Persi, D., Xiao, L., , SIAM Rev. 46 (2004), 4, 667-689. MR2124681DOI
- Chen, Z., Liang, S., , Kybernetika 58 (2022), 1, 123-144. MR4405950DOI
- Chen, Z., Ma, J., Liang, S., Li, L., , Automatica 141 (2022), 110318. MR4409952DOI
- Cheng, S., Liang, S., Fan, Y., Hong, Y., , IEEE Trans. Automat. Control (2022). MR4596660DOI
- Dorina, T., Effrosyni, K., Pu, Y., Pascal, F., , IEEE Trans. Signal Process. 61 (2013), 1, 194-205. MR3008630DOI
- Jian, L., Hu, J., Wang, J., Shi, K., , Optimal Control Appl. Methods 40 (2019), 6, 1071-1087. MR4028355DOI
- Lei, J., Chen, H., Fang, H., , Systems Control Lett. 96 (2016), 110-117. MR3547663DOI
- Lei, J., Yi, P., Shi, G., Brian, D. O. A., , SIAM J. Optim. 30 (2020), 2, 1191-1222. MR4091883DOI
- Li, X., Feng, G., Xie, L., , IEEE Trans. Automat. Control 66 (2021), 3, 1223-1230. MR4226768DOI
- Li, X., Gang, F., Lihua, X., 10.1109/ICCA.2019.8899938, 2019 IEEE 15th International Conference on Control and Automation (ICCA), IEEE, (2019), 824-829. DOI10.1109/ICCA.2019.8899938
- Li, P., Hu, J., Qiu, L., Zhao, Y., Bijoy, K. G., , IEEE Trans. Control Network Systems 9 (2022), 1, 356-366. MR4450544DOI
- Li, W., Zeng, X., Liang, S., Hong, Y., 10.1109/TAC.2021.3075666, IEEE Trans. Automat. Control 67 (2022), 2, 934-940. MR4376129DOI10.1109/TAC.2021.3075666
- Liang, S., Wang, L., George, Y., , Automatica 105 (2019), 298-306. MR3942714DOI
- Liu, Y., Wu, G., Tian, Z., Ling, Q., , IEEE Trans. Neural Networks Learn. Systems 33 (2022), 8, 3290-3304. MR4468237DOI
- Ma, S., , J. Scientific Computing 68 (2016), 2, 546-572. MR3519192DOI
- Ma, X., Yi, P., Chen, J., , J. Systems Science Complexity 34 (2021), 5, 1927-1952. MR4331654DOI
- Pillai, S. U., Torsten, S., Seunghun, Ch., , IEEE Signal Process. Magazine 22 (2005), 2, 62-75. DOI
- Qiu, Z., Xie, L., Hong, Y., , IEEE Trans. Automat. Control 61 (2016), 9, 2432-2447. MR3545063DOI
- Shi, W., Ling, Q., Yuan, K., Wu, G., Yin, W., , IEEE Trans. Signal Process. 62 (2014), 7, 1750-1761. MR3189404DOI
- Wang, C., Xu, S., Yuan, D., Zhang, B., Zhang, Z., , Neurocomputing 497 (2022), 204-215. DOI
- Wang, J., Fu, L., Gu, Y., Li, T., , J. Systems Science Complexity 34 (2021), 4, 1438-1453. MR4298058DOI
- Wei, Y., Fang, H., Zeng, X., Chen, J., Panos, P., , IEEE Trans. Automat. Control 65 (2020), 4, 1800-1806. MR4085556DOI
- Xie, X., Ling, Q., Lu, P., Xu, W., Zhu, Z., , IEEE Trans. Parallel Distributed Systems 29 (2018), 5, 1058-1074. DOI
- Xu, T., Wu, W., , IEEE Trans. Industr. Inform. 16 (2020), 12, 7532-7543. DOI
- Yi, P., Hong, Y., , IEEE Trans. Contro Network Systems 1 (2014), 4, 380-392. MR3303147DOI
- Yu, W., Liu, H., Zheng, W. Z., Zhu, Y., , Automatica 134 (2021), 11, 109899. MR4309380DOI
- Yuan, D., Hong, Y., Daniel, W. C. H., Xu, S., , IEEE Trans. Automat. Control 66 (2021), 2, 714-729. MR4210454DOI
- Yuan, D., Xu, S., Zhang, B., Rong, L., , Int. J. Robust Nonlinear Control 23 (2013), 15, 1846-1868. MR3126782DOI
- Zhang, J., Liu, H., Anthony, M.-Ch. S., Man-Cho, Ling, Q., 10.1109/TSP.2021.3092347, IEEE Trans. Signal Process. 69 (2021), 4282-4295. MR4302986DOI10.1109/TSP.2021.3092347
- Zhao, X., Yi, P., Li, L., , Control Theory Technol. 18 (2020), 4, 362-378. MR4188357DOI
- Zhou, H., Zeng, X., Hong, Y., , IEEE Trans. Automat. Control 64 (2019), 11, 4661-4667. MR4030790DOI
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.