Distributed aggregative optimization with quantized communication
Kybernetika (2022)
- Volume: 58, Issue: 1, page 123-144
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topChen, Ziqin, and Liang, Shu. "Distributed aggregative optimization with quantized communication." Kybernetika 58.1 (2022): 123-144. <http://eudml.org/doc/297603>.
@article{Chen2022,
abstract = {In this paper, we focus on an aggregative optimization problem under the communication bottleneck. The aggregative optimization is to minimize the sum of local cost functions. Each cost function depends on not only local state variables but also the sum of functions of global state variables. The goal is to solve the aggregative optimization problem through distributed computation and local efficient communication over a network of agents without a central coordinator. Using the variable tracking method to seek the global state variables and the quantization scheme to reduce the communication cost spent in the optimization process, we develop a novel distributed quantized algorithm, called D-QAGT, to track the optimal variables with finite bits communication. Although quantization may lose transmitting information, our algorithm can still achieve the exact optimal solution with linear convergence rate. Simulation experiments on an optimal placement problem is carried out to verify the correctness of the theoretical results.},
author = {Chen, Ziqin, Liang, Shu},
journal = {Kybernetika},
keywords = {distributed aggregative optimization; multi-agent network; quantized communication; linear convergence rate},
language = {eng},
number = {1},
pages = {123-144},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Distributed aggregative optimization with quantized communication},
url = {http://eudml.org/doc/297603},
volume = {58},
year = {2022},
}
TY - JOUR
AU - Chen, Ziqin
AU - Liang, Shu
TI - Distributed aggregative optimization with quantized communication
JO - Kybernetika
PY - 2022
PB - Institute of Information Theory and Automation AS CR
VL - 58
IS - 1
SP - 123
EP - 144
AB - In this paper, we focus on an aggregative optimization problem under the communication bottleneck. The aggregative optimization is to minimize the sum of local cost functions. Each cost function depends on not only local state variables but also the sum of functions of global state variables. The goal is to solve the aggregative optimization problem through distributed computation and local efficient communication over a network of agents without a central coordinator. Using the variable tracking method to seek the global state variables and the quantization scheme to reduce the communication cost spent in the optimization process, we develop a novel distributed quantized algorithm, called D-QAGT, to track the optimal variables with finite bits communication. Although quantization may lose transmitting information, our algorithm can still achieve the exact optimal solution with linear convergence rate. Simulation experiments on an optimal placement problem is carried out to verify the correctness of the theoretical results.
LA - eng
KW - distributed aggregative optimization; multi-agent network; quantized communication; linear convergence rate
UR - http://eudml.org/doc/297603
ER -
References
top- Barbarossa, S., Sardellitti, S., Lorenzo, P. D., , IEEE Signal Process. Mag. 31 (2014), 45-55. DOI
- Cao, X., Liu, K. J. R., , IEEE Trans. Automat. Control 66 (2021), 1278-1285. MR4226775DOI
- Cheng, S., Liang, S., , Kybernetika 56 (2020), 559-577. MR4131743DOI
- Chen, J., Sayed, A., , IEEE Trans. Signal Process. 60 (2012), 4289-4305. MR2960496DOI
- Deng, Z., Liang, S., , Automatica 99 (2019), 246-252. MR3876174DOI
- Persis, C. De, Grammatico, S., , IEEE Trans. Automat. Control 65 (2020), 2171-2176. MR4091832DOI
- Horn, R. A., Johnson, C. R, Matrix Analysis., Cambridge University Press, New York 2012. Zbl0801.15001MR2978290
- Jakovetic, D., Moura, J. M. F., Xavier, J., , IEEE Trans. Automat. Control 60 (2015), 922-936. MR3340785DOI
- Kajiyama, Y., Hayashi, N., Takai, S., , IEEE Trans. Automat. Control 66 (2020), 1254-1261. MR4226772DOI
- Lan, G., Lee, S., Zhou, Y., , Math. Program. 180 (2020), 237-284. MR4062837DOI
- Li, P., Hu, J., , Control Theory Technol. 19 (2021), 499-506. MR4356235DOI
- Li, P., Hu, J., Qiu, L., Zhao, Y., Ghosh, B., , IEEE Trans. Control Netw. Syst., Early Access (2021). DOI
- Li, X., Xie, L., Hong, Y., , Int. J. Robust Nonlinear Control 29 (2019), 3252-3266. MR3973593DOI
- Li, X., Xie, L., Hong, Y., , IEEE Trans. Automat. Control. Early Access (2021). DOI
- Ma, J., Yu, X., Liu, L., Feng, G., , IEEE Trans. Control Netw. Syst., Early Access (2021). DOI
- Magnussson, S., Shokri-Ghadikolaei, H., Li, N., , IEEE Trans. Signal Process. 68 (2020), 6101-6116. MR4177712DOI
- Msechu, E. J., Giannakis, G. B., , IEEE Trans. Signal Process. 60 (2011), 400-414. MR2932127DOI
- Nedic, A., 10.1109/MSP.2020.2975210, IEEE Signal Process. Mag. 73 (2020), 92-101. DOI10.1109/MSP.2020.2975210
- Nedic, A., Ozdaglar, A., , IEEE Trans. Autom. Control 54 (2009), 48-61. MR2478070DOI
- Pu, Y., Zeilinger, M. N., Jones, C. N., , IEEE Trans. Automat. Control 62 (2016), 2107-2120. MR3641434DOI
- Ren, W., Beard, R. W., Distributed consensus in multi-vehicle cooperative control., Springer, London 2008.
- Shi, W., Ling, Q., Wu, G., Yin, W., , SIAM J. Optim. 25 (2015), 944-966. MR3343366DOI
- Tardos, E., Vazirani, V. V., , Algorithmic Game Theory (2007), 3-28. MR2391748DOI
- Wang, X., Deng, Z., Ma, S., Xian, D., , Kybernetika 53 (2017), 179-194. MR3638563DOI
- Wang, Y., Lin, P., Qin, H., , Kybernetika 53 (2017), 595-611. MR3730254DOI
- Xu, J., Zhu, S., Soh, Y. C., Xie, L., , IEEE Trans. Automat. Control 63 (2018), 3809-3824. MR3875379DOI
- Yi, P., Hong, Y., , IEEE Trans. Control Netw. Syst. 1 (2014), 380-392. MR3303147DOI
- Yi, P., Hong, Y., Liu, F., , Automatica 74 (2016), 259-269. MR3569392DOI
- Yuan, D., Hong, Y., Ho, D., Jiang, G., , Automatica 90 (2018), 196-203. MR3764399DOI
- Zhang, X., Liu, J., Zhu, Z., Bentley, E. S., , In: Proc. IEEE Conf. Comput. Commun. 2019, 2431-2439. DOI
- Zhu, S., Hong, M., Chen, B., , In: Proc. IEEE Int. Conf. Acoust., Speech Signal Process 2016, pp. 4134-4138. DOI
Citations in EuDML Documents
top- Chenyang Liu, Xiaohua Dou, Yuan Fan, Songsong Cheng, A penalty ADMM with quantized communication for distributed optimization over multi-agent systems
- Xianlin Zeng, Lihua Dou, Jinqiang Cui, Distributed accelerated Nash equilibrium learning for two-subnetwork zero-sum game with bilinear coupling
- Yikun Zeng, Yiheng Wei, Shuaiyu Zhou, Dongdong Yue, Distributed optimization via active disturbance rejection control: A nabla fractional design
- Zhaoxu Wang, Chao Zhai, Hehong Zhang, Gaoxi Xiao, Guanghou Chen, Yulin Xu, Coordination control and analysis of TCSC devices to protect electrical power systems against disruptive disturbances
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.