Weak solvability and numerical analysis of a class of time-fractional hemivariational inequalities with application to frictional contact problems

Mustapha Bouallala

Applications of Mathematics (2024)

  • Volume: 69, Issue: 4, page 451-479
  • ISSN: 0862-7940

Abstract

top
We investigate a generalized class of fractional hemivariational inequalities involving the time-fractional aspect. The existence result is established by employing the Rothe method in conjunction with the surjectivity of multivalued pseudomonotone operators and the properties of the Clarke generalized gradient. We are also exploring a numerical approach to address the problem, utilizing both spatially semi-discrete and fully discrete finite elements, along with a discrete approximation of the fractional derivative. All these results are applied to the analysis and numerical approximations of a frictional contact model that describes the quasi-static contact between a viscoelastic body and a solid foundation. The constitutive relation is modeled using the fractional Kelvin-Voigt law. The contact and friction are described by the subdifferential boundary conditions. The variational formulation of this problem leads to a fractional hemivariational inequality. The error estimates for this problem are derived. Finally, here's a second concrete example to illustrate the application. We propose a frictional contact model that incorporates normal compliance and Coulomb friction to describe the quasi-static contact between a viscoelastic body and a solid foundation.

How to cite

top

Bouallala, Mustapha. "Weak solvability and numerical analysis of a class of time-fractional hemivariational inequalities with application to frictional contact problems." Applications of Mathematics 69.4 (2024): 451-479. <http://eudml.org/doc/299538>.

@article{Bouallala2024,
abstract = {We investigate a generalized class of fractional hemivariational inequalities involving the time-fractional aspect. The existence result is established by employing the Rothe method in conjunction with the surjectivity of multivalued pseudomonotone operators and the properties of the Clarke generalized gradient. We are also exploring a numerical approach to address the problem, utilizing both spatially semi-discrete and fully discrete finite elements, along with a discrete approximation of the fractional derivative. All these results are applied to the analysis and numerical approximations of a frictional contact model that describes the quasi-static contact between a viscoelastic body and a solid foundation. The constitutive relation is modeled using the fractional Kelvin-Voigt law. The contact and friction are described by the subdifferential boundary conditions. The variational formulation of this problem leads to a fractional hemivariational inequality. The error estimates for this problem are derived. Finally, here's a second concrete example to illustrate the application. We propose a frictional contact model that incorporates normal compliance and Coulomb friction to describe the quasi-static contact between a viscoelastic body and a solid foundation.},
author = {Bouallala, Mustapha},
journal = {Applications of Mathematics},
keywords = {hemivariational inequality; Rothe method; Clarke subdifferential; Caputo derivative; fractional viscoelastic constitutive law; contact with friction; numerical scheme; finite element method; convergence analysis; error estimation},
language = {eng},
number = {4},
pages = {451-479},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Weak solvability and numerical analysis of a class of time-fractional hemivariational inequalities with application to frictional contact problems},
url = {http://eudml.org/doc/299538},
volume = {69},
year = {2024},
}

TY - JOUR
AU - Bouallala, Mustapha
TI - Weak solvability and numerical analysis of a class of time-fractional hemivariational inequalities with application to frictional contact problems
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 4
SP - 451
EP - 479
AB - We investigate a generalized class of fractional hemivariational inequalities involving the time-fractional aspect. The existence result is established by employing the Rothe method in conjunction with the surjectivity of multivalued pseudomonotone operators and the properties of the Clarke generalized gradient. We are also exploring a numerical approach to address the problem, utilizing both spatially semi-discrete and fully discrete finite elements, along with a discrete approximation of the fractional derivative. All these results are applied to the analysis and numerical approximations of a frictional contact model that describes the quasi-static contact between a viscoelastic body and a solid foundation. The constitutive relation is modeled using the fractional Kelvin-Voigt law. The contact and friction are described by the subdifferential boundary conditions. The variational formulation of this problem leads to a fractional hemivariational inequality. The error estimates for this problem are derived. Finally, here's a second concrete example to illustrate the application. We propose a frictional contact model that incorporates normal compliance and Coulomb friction to describe the quasi-static contact between a viscoelastic body and a solid foundation.
LA - eng
KW - hemivariational inequality; Rothe method; Clarke subdifferential; Caputo derivative; fractional viscoelastic constitutive law; contact with friction; numerical scheme; finite element method; convergence analysis; error estimation
UR - http://eudml.org/doc/299538
ER -

References

top
  1. Bai, Y., Migórski, S., Zeng, S., 10.1016/j.camwa.2019.12.025, Comput. Math. Appl. 79 (2020), 2897-2911. (2020) Zbl1445.49014MR4083028DOI10.1016/j.camwa.2019.12.025
  2. Baiocchi, C., Capelo, A., Variational and Quasivariational Inequalities: Applications to Free Boundary Problems, John Wiley & Sons, Chichester (1984). (1984) Zbl0551.49007MR0745619
  3. Baleanu, D., Machado, J. A. T., Luo, A. C. J., 10.1007/978-1-4614-0457-6, Springer, New York (2012). (2012) Zbl1231.93003MR2905887DOI10.1007/978-1-4614-0457-6
  4. Bartosz, K., Sofonea, M., 10.1137/151005610, SIAM J. Math. Anal. 48 (2016), 861-883. (2016) Zbl1342.49009MR3466201DOI10.1137/151005610
  5. Benaceur, A., Ern, A., Ehrlacher, V., 10.1002/nme.6261, Int. J. Numer. Methods Eng. 121 (2020), 1170-1197. (2020) Zbl07843242MR4072510DOI10.1002/nme.6261
  6. Bonfanti, A., Kaplan, J. L., Charras, G., Kabla, A., 10.1039/D0SM00354A, Soft Matter 16 (2020), 6002-6020. (2020) DOI10.1039/D0SM00354A
  7. Bouallala, M., Essoufi, El-H., 10.15407/mag17.03.280, J. Math. Phys. Anal. Geom. 17 (2021), 280-294. (2021) Zbl1501.74056MR4345635DOI10.15407/mag17.03.280
  8. Bouallala, M., Essoufi, El-H., Nguyen, V. T., Pang, W., 10.1140/epjs/s11734-023-00962-x, Eur. Phys. J. Spec. Topics 232 (2023), 2549-2558. (2023) DOI10.1140/epjs/s11734-023-00962-x
  9. Brézis, H., 10.5802/aif.280, Ann. Inst. Fourier 18 (1968), 115-175 French. (1968) Zbl0169.18602MR0270222DOI10.5802/aif.280
  10. Carstensen, C., Gwinner, J., 10.1007/BF02505918, Ann. Mat. Pura Appl., IV. Ser. 177 (1999), 363-394. (1999) Zbl0954.65052MR1747640DOI10.1007/BF02505918
  11. Cen, J., Liu, Y., Nguen, V. T., Zeng, S., 10.1142/S0218348X21400363, Fractals 29 (2021), Article ID 2140036, 14 pages. (2021) Zbl1512.34109DOI10.1142/S0218348X21400363
  12. Clarke, F. H., 10.1137/1.9781611971309, Classics in Applied Mathematics 5. SIAM, Philadelphia (1990). (1990) Zbl0696.49002MR1058436DOI10.1137/1.9781611971309
  13. Denkowski, Z., Migórski, S., Papageorgiou, N. S., 10.1007/978-1-4419-9156-0, Kluwer Academic, Dordrecht (2003). (2003) Zbl1054.47001MR2024161DOI10.1007/978-1-4419-9156-0
  14. Diethelm, K., Ford, N. J., Freed, A. D., 10.1023/A:1016592219341, Nonlinear Dyn. 29 (2002), 3-22. (2002) Zbl1009.65049MR1926466DOI10.1023/A:1016592219341
  15. Eck, C., Jarušek, J., 10.1142/S0218202598000196, Math. Models Methods Appl. Sci. 8 (1998), 445-468. (1998) Zbl0907.73052MR1624879DOI10.1142/S0218202598000196
  16. Han, J., Migórski, S., Zeng, H., 10.1016/j.amc.2017.01.009, Appl. Math. Comput. 303 (2017), 1-18. (2017) Zbl1411.74044MR3607901DOI10.1016/j.amc.2017.01.009
  17. Han, W., Sofonea, M., 10.1090/amsip/030, AMS/IP Studies in Advanced Mathematics 30. AMS, Providence (2002). (2002) Zbl1013.74001MR1935666DOI10.1090/amsip/030
  18. Hung, N. V., Tam, V. M., 10.1007/s00033-021-01602-x, Z. Angew. Math. Phys. 72 (2021), Article ID 173, 17 pages. (2021) Zbl1518.47094MR4300248DOI10.1007/s00033-021-01602-x
  19. Kačur, J., Method of Rothe in Evolution Equations, Teubner-Texte zur Mathematik 80. B. G. Teubner, Leipzig (1985). (1985) Zbl0582.65084MR0834176
  20. Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., 10.1016/s0304-0208(06)x8001-5, North-Holland Mathematics Studies 204. Elsevier, Amsterdam (2006). (2006) Zbl1092.45003MR2218073DOI10.1016/s0304-0208(06)x8001-5
  21. Kinderlehrer, D., Stampacchia, G., 10.1137/1.9780898719451, Classics in Applied Mathematics 31. SIAM, Philadelphia (2000). (2000) Zbl0988.49003MR1786735DOI10.1137/1.9780898719451
  22. Koeller, R. C., 10.1115/1.3167616, J. Appl. Mech. 51 (1984), 299-307. (1984) Zbl0544.73052MR0747787DOI10.1115/1.3167616
  23. Li, C., Cai, M., 10.1137/1.9781611975888, Other Titles in Applied Mathematics 163. SIAM, Philadelphia (2020). (2020) Zbl1483.65007MR4030088DOI10.1137/1.9781611975888
  24. Liu, Z., Migórski, S., Ochal, A., 10.1016/j.jmaa.2007.09.050, J. Math. Anal. Appl. 340 (2008), 1347-1361. (2008) Zbl1129.74032MR2390934DOI10.1016/j.jmaa.2007.09.050
  25. Meerschaert, M. M., Scheffler, H.-P., Tadjeran, C., 10.1016/j.jcp.2005.05.017, J. Comput. Phys. 211 (2006), 249-261. (2006) Zbl1085.65080MR2168877DOI10.1016/j.jcp.2005.05.017
  26. Metzler, R., Klafter, J., 10.1016/S0370-1573(00)00070-3, Phys. Rep. 339 (2000), 1-77. (2000) Zbl0984.82032MR1809268DOI10.1016/S0370-1573(00)00070-3
  27. Migórski, S., 10.1080/00036810500048129, Appl. Anal. 84 (2005), 669-699. (2005) Zbl1081.74036MR2152682DOI10.1080/00036810500048129
  28. Migórski, S., Bai, Y., Zeng, S., 10.1016/j.nonrwa.2019.06.006, Nonlinear Anal., Real World Appl. 50 (2019), 633-650. (2019) Zbl1436.35216MR3974776DOI10.1016/j.nonrwa.2019.06.006
  29. Migórski, S., Ochal, A., 10.1007/s10659-005-9034-0, J. Elasticity 83 (2006), 247-275. (2006) Zbl1138.74375MR2248126DOI10.1007/s10659-005-9034-0
  30. Migórski, S., Ochal, A., 10.1137/080733231, SIAM J. Math. Anal. 41 (2009), 1415-1435. (2009) Zbl1204.35123MR2540272DOI10.1137/080733231
  31. Migórski, S., Ochal, A., Sofonea, M., 10.1017/S0956792508007663, Eur. J. Appl. Math. 20 (2009), 145-167. (2009) Zbl1157.74030MR2491121DOI10.1017/S0956792508007663
  32. Migórski, S., Ochal, A., Sofonea, M., 10.1007/978-1-4614-4232-5, Advances in Mechanics and Mathematics 26. Springer, Berlin (2013). (2013) Zbl1262.49001MR2976197DOI10.1007/978-1-4614-4232-5
  33. Migórski, S., Zeng, S., 10.1007/s11075-019-00667-0, Numer. Algorithms 82 (2019), 423-450. (2019) Zbl1433.65192MR4003753DOI10.1007/s11075-019-00667-0
  34. Nutting, P. G., 10.1016/S0016-0032(43)91483-8, J. Franklin Inst. 235 (1943), 513-524. (1943) DOI10.1016/S0016-0032(43)91483-8
  35. Panagiotopoulos, D. P., 10.1007/978-1-4612-5152-1, Birkhäuser, Boston (1985). (1985) Zbl0579.73014MR0896909DOI10.1007/978-1-4612-5152-1
  36. Patel, V., 10.21203/rs.3.rs-1887890/v1, Available at https://www.researchsquare.com/article/rs-1887890/v1 (2022), 19 pages. (2022) DOI10.21203/rs.3.rs-1887890/v1
  37. Podlubny, I., Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering 198. Academic Press, San Diego (1999). (1999) Zbl0924.34008MR1658022
  38. P. E. Rouse, Jr., 10.1063/1.1699180, J. Chem. Phys. 21 (1953), 1272-1280. (1953) DOI10.1063/1.1699180
  39. Shen, S., Liu, F., Chen, J., Turner, I., Anh, V., 10.1016/j.amc.2012.04.047, Appl. Math. Comput. 218 (2012), 10861-10870. (2012) Zbl1280.65089MR2942371DOI10.1016/j.amc.2012.04.047
  40. Shillor, M., Sofonea, M., Telega, J. J., 10.1007/b99799, Lecture Notes in Physics 655. Springer, Berlin (2004). (2004) Zbl1069.74001DOI10.1007/b99799
  41. Sofonea, M., Matei, A., 10.1017/CBO9781139104166, London Mathematical Society Lecture Note Series 398. Cambridge University Press, Cambridge (2012). (2012) Zbl1255.49002DOI10.1017/CBO9781139104166
  42. Weng, Y., Chen, T., Li, X., Huang, N., 10.1016/j.camwa.2021.07.003, Comput. Math. Appl. 98 (2021), 118-138. (2021) Zbl1524.49023MR4292075DOI10.1016/j.camwa.2021.07.003
  43. Yuan, L., Agrawal, O. P., 10.1115/1.1448322, J. Vib. Acoust. 124 (2002), 321-324. (2002) DOI10.1115/1.1448322
  44. Zeidler, E., 10.1007/978-1-4612-0985-0, Springer, New York (1990). (1990) Zbl0684.47028MR1033497DOI10.1007/978-1-4612-0985-0
  45. Zeidler, E., 10.1007/978-1-4612-0985-0, Springer, New York (1990). (1990) Zbl0684.47029MR1033498DOI10.1007/978-1-4612-0985-0
  46. Zeng, F., Li, C., Liu, F., Turner, I., 10.1137/130910865, SIAM J. Sci. Comput. 35 (2013), A2976--A3000. (2013) Zbl1292.65096MR3143842DOI10.1137/130910865
  47. Zeng, S., Migórski, S., 10.1016/j.jmaa.2017.05.072, J. Math. Anal. Appl. 455 (2017), 619-637. (2017) Zbl1433.35202MR3665122DOI10.1016/j.jmaa.2017.05.072
  48. Zeng, S., Migórski, S., 10.1016/j.cnsns.2017.07.016, Commun. Nonlinear Sci. Numer. Simul. 56 (2018), 34-48. (2018) Zbl1524.35356MR3709812DOI10.1016/j.cnsns.2017.07.016

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.