Continuous dependence and general decay of solutions for a wave equation with a nonlinear memory term
Doan Thi Nhu Quynh; Nguyen Huu Nhan; Le Thi Phuong Ngoc; Nguyen Thanh Long
Applications of Mathematics (2023)
- Volume: 68, Issue: 2, page 209-254
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topQuynh, Doan Thi Nhu, et al. "Continuous dependence and general decay of solutions for a wave equation with a nonlinear memory term." Applications of Mathematics 68.2 (2023): 209-254. <http://eudml.org/doc/299539>.
@article{Quynh2023,
abstract = {We study existence, uniqueness, continuous dependence, general decay of solutions of an initial boundary value problem for a viscoelastic wave equation with strong damping and nonlinear memory term. At first, we state and prove a theorem involving local existence and uniqueness of a weak solution. Next, we establish a sufficient condition to get an estimate of the continuous dependence of the solution with respect to the kernel function and the nonlinear terms. Finally, under suitable conditions to obtain the global solution, we prove the general decay property with positive initial energy for this global solution.},
author = {Quynh, Doan Thi Nhu, Nhan, Nguyen Huu, Ngoc, Le Thi Phuong, Long, Nguyen Thanh},
journal = {Applications of Mathematics},
keywords = {viscoelastic equations; strong damping; nonlinear memory; general decay},
language = {eng},
number = {2},
pages = {209-254},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Continuous dependence and general decay of solutions for a wave equation with a nonlinear memory term},
url = {http://eudml.org/doc/299539},
volume = {68},
year = {2023},
}
TY - JOUR
AU - Quynh, Doan Thi Nhu
AU - Nhan, Nguyen Huu
AU - Ngoc, Le Thi Phuong
AU - Long, Nguyen Thanh
TI - Continuous dependence and general decay of solutions for a wave equation with a nonlinear memory term
JO - Applications of Mathematics
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 2
SP - 209
EP - 254
AB - We study existence, uniqueness, continuous dependence, general decay of solutions of an initial boundary value problem for a viscoelastic wave equation with strong damping and nonlinear memory term. At first, we state and prove a theorem involving local existence and uniqueness of a weak solution. Next, we establish a sufficient condition to get an estimate of the continuous dependence of the solution with respect to the kernel function and the nonlinear terms. Finally, under suitable conditions to obtain the global solution, we prove the general decay property with positive initial energy for this global solution.
LA - eng
KW - viscoelastic equations; strong damping; nonlinear memory; general decay
UR - http://eudml.org/doc/299539
ER -
References
top- Bayraktar, S., Gür, Ş., 10.3906/mat-1912-20, Turk. J. Math. 44 (2020), 334-341. (2020) Zbl1450.35042MR4059543DOI10.3906/mat-1912-20
- Benilan, P., Crandall, M. G., 10.1512/iumj.1981.30.30014, Indiana Univ. Math. J. 30 (1981), 161-177. (1981) Zbl0482.35012MR0604277DOI10.1512/iumj.1981.30.30014
- Boumaza, N., Boulaaras, S., 10.1002/mma.5117, Math. Methods Appl. Sci. 41 (2018), 6050-6069. (2018) Zbl1415.35038MR3879228DOI10.1002/mma.5117
- Cavalcanti, M. M., Cavalcanti, V. N. Domingos, Martinez, P., 10.1016/j.na.2006.10.040, Nonlinear Anal., Theory Methods Appl., Ser. A 68 (2008), 177-193. (2008) Zbl1124.74009MR2361147DOI10.1016/j.na.2006.10.040
- Cockburn, B., Gripenber, G., 10.1006/jdeq.1998.3499, J. Differ. Equations 151 (1999), 231-251. (1999) Zbl0921.35017MR1669570DOI10.1006/jdeq.1998.3499
- Conti, M., Pata, V., 10.1007/s00033-019-1229-5, Z. Angew. Math. Phys. 71 (2020), Article ID 6, 21 pages. (2020) Zbl1430.35030MR4041122DOI10.1007/s00033-019-1229-5
- D'Abbicco, M., 10.1016/j.na.2013.09.006, Nonlinear Anal., Theory Methods Appl., Ser. A 95 (2014), 130-145. (2014) Zbl1284.35286MR3130512DOI10.1016/j.na.2013.09.006
- D'Abbicco, M., Lucente, S., 10.1007/s00033-016-0655-x, Z. Angew. Math. Phys. 67 (2016), Article ID 60, 18 pages. (2016) Zbl1361.35116MR3493963DOI10.1007/s00033-016-0655-x
- Douglis, A., 10.1002/cpa.3160140307, Commun. Pure Appl. Math. 14 (1961), 267-284. (1961) Zbl0117.31102MR0139848DOI10.1002/cpa.3160140307
- Duvaut, G., Lions, J. L., 10.1007/978-3-642-66165-5, Grundlehren der mathematischen Wissenschaften 219. Springer, Berlin (1976). (1976) Zbl0331.35002MR0521262DOI10.1007/978-3-642-66165-5
- Ekinci, F., Pişkin, E., Boulaaras, S. M., Mekawy, I., 10.1155/2021/4316238, J. Funct. Spaces 2021 (2021), Article ID 4316238, 10 pages. (2021) Zbl1472.35239MR4283631DOI10.1155/2021/4316238
- Fino, A. Z., 10.1016/j.na.2011.01.039, Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 5495-5505. (2011) Zbl1222.35025MR2819292DOI10.1016/j.na.2011.01.039
- Gripenberg, G., 10.1006/jdeq.1993.1035, J. Differ. Equations 102 (1993), 382-390. (1993) Zbl0780.45012MR1216735DOI10.1006/jdeq.1993.1035
- Gür, Ş., Uysal, M. E., 10.3906/mat-1706-30, Turk. J. Math. 42 (2018), 904-910. (2018) Zbl1424.35261MR3804959DOI10.3906/mat-1706-30
- Han, X., Wang, M., 10.1016/j.jfranklin.2010.02.010, J. Franklin Inst. 347 (2010), 806-817. (2010) Zbl1286.35148MR2645392DOI10.1016/j.jfranklin.2010.02.010
- Hao, J., Wei, H., 10.1186/s13661-017-0796-7, Bound. Value Probl. 2017 (2017), Article ID 65, 12 pages. (2017) Zbl1379.35192MR3647200DOI10.1186/s13661-017-0796-7
- Hassan, J. H., Messaoudi, S. A., 10.3233/ASY-201661, Asymptotic Anal. 125 (2021), 365-388. (2021) MR4374601DOI10.3233/ASY-201661
- Hrusa, W. J., 10.1137/0516007, SIAM J. Math. Anal. 16 (1985), 110-134. (1985) Zbl0571.45007MR0772871DOI10.1137/0516007
- Jleli, M., Samet, B., Vetro, C., 10.3390/sym12101609, Symmetry 12 (2020), Article ID 1609, 12 pages. (2020) DOI10.3390/sym12101609
- John, F., 10.1002/cpa.3160130402, Commun. Pure Appl. Math. 13 (1960), 551-586. (1960) Zbl0097.08101MR130456DOI10.1002/cpa.3160130402
- Kaddour, T. H., Reissig, M., 10.3934/cpaa.2021057, Commun. Pure Appl. Anal. 20 (2021), 2039-2064. (2021) Zbl1466.35264MR4259639DOI10.3934/cpaa.2021057
- Kafini, M., Messaoudi, S. A., 10.1016/j.aml.2007.07.004, Appl. Math. Lett. 21 (2008), 549-553. (2008) Zbl1149.35076MR2412376DOI10.1016/j.aml.2007.07.004
- Kafini, M., Mustafa, M. I., 10.1016/j.nonrwa.2014.04.005, Nonlinear Anal., Real World Appl. 20 (2014), 14-20. (2014) Zbl1295.35129MR3233895DOI10.1016/j.nonrwa.2014.04.005
- Li, Q., He, L., 10.1186/s13661-018-1072-1, Bound. Value Probl. 2018 (2018), Article ID 153, 22 pages. (2018) MR3859565DOI10.1186/s13661-018-1072-1
- Lions, J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Etudes mathematiques. Dunod, Paris (1969), French. (1969) Zbl0189.40603MR0259693
- Long, N. T., Dinh, A. P. N., Truong, L. X., 10.1080/01630560802605955, Numer. Funct. Anal. Optim. 29 (2008), 1363-1393. (2008) Zbl1162.35053MR2479113DOI10.1080/01630560802605955
- Mesloub, F., Boulaaras, S., 10.1007/s12190-017-1161-9, J. Appl. Math. Comput. 58 (2018), 647-665. (2018) Zbl1403.35050MR3847059DOI10.1007/s12190-017-1161-9
- Messaoudi, S. A., 10.1002/mana.200310104, Math. Nachr. 260 (2003), 58-66. (2003) Zbl1035.35082MR2017703DOI10.1002/mana.200310104
- Messaoudi, S. A., 10.1016/j.na.2007.08.035, Nonlinear Anal., Theory Methods Appl., Ser. A 69 (2008), 2589-2598. (2008) Zbl1154.35066MR2446355DOI10.1016/j.na.2007.08.035
- Mustafa, M. I., 10.1016/j.jmaa.2017.08.019, J. Math. Anal. Appl. 457 (2018), 134-152. (2018) Zbl1379.35028MR3702699DOI10.1016/j.jmaa.2017.08.019
- Mustafa, M. I., 10.1002/mma.4604, Math. Methods Appl. Sci. 41 (2018), 192-204. (2018) Zbl1391.35058MR3745365DOI10.1002/mma.4604
- Ngoc, L. T. P., Quynh, D. T. N., Triet, N. A., Long, N. T., Linear approximation and asymptotic expansion associated to the Robin-Dirichlet problem for a Kirchhoff-Carrier equation with a viscoelastic term, Kyungpook Math. J. 59 (2019), 735-769. (2019) MR4057771
- Pan, J. Q., 10.1016/j.na.2006.09.017, Nonlinear Anal., Theory Methods Appl., Ser. A 67 (2007), 2081-2090. (2007) Zbl1123.35026MR2331859DOI10.1016/j.na.2006.09.017
- Quynh, D. T. N., Nam, B. D., Thanh, L. T. M., Dung, T. T. M., Nhan, N. H., 10.1155/2021/9917271, Math. Probl. Eng. 2021 (2021), Article ID 9917271, 27 pages. (2021) MR4274176DOI10.1155/2021/9917271
- Shang, Y., Guo, B., On the problem of the existence of global solutions for a class of nonlinear convolutional intergro-differential equations of pseudoparabolic type, Acta Math. Appl. Sin. 26 (2003), 511-524 Chinese. (2003) Zbl1057.45004MR2022221
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.