Continuous dependence and general decay of solutions for a wave equation with a nonlinear memory term

Doan Thi Nhu Quynh; Nguyen Huu Nhan; Le Thi Phuong Ngoc; Nguyen Thanh Long

Applications of Mathematics (2023)

  • Volume: 68, Issue: 2, page 209-254
  • ISSN: 0862-7940

Abstract

top
We study existence, uniqueness, continuous dependence, general decay of solutions of an initial boundary value problem for a viscoelastic wave equation with strong damping and nonlinear memory term. At first, we state and prove a theorem involving local existence and uniqueness of a weak solution. Next, we establish a sufficient condition to get an estimate of the continuous dependence of the solution with respect to the kernel function and the nonlinear terms. Finally, under suitable conditions to obtain the global solution, we prove the general decay property with positive initial energy for this global solution.

How to cite

top

Quynh, Doan Thi Nhu, et al. "Continuous dependence and general decay of solutions for a wave equation with a nonlinear memory term." Applications of Mathematics 68.2 (2023): 209-254. <http://eudml.org/doc/299539>.

@article{Quynh2023,
abstract = {We study existence, uniqueness, continuous dependence, general decay of solutions of an initial boundary value problem for a viscoelastic wave equation with strong damping and nonlinear memory term. At first, we state and prove a theorem involving local existence and uniqueness of a weak solution. Next, we establish a sufficient condition to get an estimate of the continuous dependence of the solution with respect to the kernel function and the nonlinear terms. Finally, under suitable conditions to obtain the global solution, we prove the general decay property with positive initial energy for this global solution.},
author = {Quynh, Doan Thi Nhu, Nhan, Nguyen Huu, Ngoc, Le Thi Phuong, Long, Nguyen Thanh},
journal = {Applications of Mathematics},
keywords = {viscoelastic equations; strong damping; nonlinear memory; general decay},
language = {eng},
number = {2},
pages = {209-254},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Continuous dependence and general decay of solutions for a wave equation with a nonlinear memory term},
url = {http://eudml.org/doc/299539},
volume = {68},
year = {2023},
}

TY - JOUR
AU - Quynh, Doan Thi Nhu
AU - Nhan, Nguyen Huu
AU - Ngoc, Le Thi Phuong
AU - Long, Nguyen Thanh
TI - Continuous dependence and general decay of solutions for a wave equation with a nonlinear memory term
JO - Applications of Mathematics
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 2
SP - 209
EP - 254
AB - We study existence, uniqueness, continuous dependence, general decay of solutions of an initial boundary value problem for a viscoelastic wave equation with strong damping and nonlinear memory term. At first, we state and prove a theorem involving local existence and uniqueness of a weak solution. Next, we establish a sufficient condition to get an estimate of the continuous dependence of the solution with respect to the kernel function and the nonlinear terms. Finally, under suitable conditions to obtain the global solution, we prove the general decay property with positive initial energy for this global solution.
LA - eng
KW - viscoelastic equations; strong damping; nonlinear memory; general decay
UR - http://eudml.org/doc/299539
ER -

References

top
  1. Bayraktar, S., Gür, Ş., 10.3906/mat-1912-20, Turk. J. Math. 44 (2020), 334-341. (2020) Zbl1450.35042MR4059543DOI10.3906/mat-1912-20
  2. Benilan, P., Crandall, M. G., 10.1512/iumj.1981.30.30014, Indiana Univ. Math. J. 30 (1981), 161-177. (1981) Zbl0482.35012MR0604277DOI10.1512/iumj.1981.30.30014
  3. Boumaza, N., Boulaaras, S., 10.1002/mma.5117, Math. Methods Appl. Sci. 41 (2018), 6050-6069. (2018) Zbl1415.35038MR3879228DOI10.1002/mma.5117
  4. Cavalcanti, M. M., Cavalcanti, V. N. Domingos, Martinez, P., 10.1016/j.na.2006.10.040, Nonlinear Anal., Theory Methods Appl., Ser. A 68 (2008), 177-193. (2008) Zbl1124.74009MR2361147DOI10.1016/j.na.2006.10.040
  5. Cockburn, B., Gripenber, G., 10.1006/jdeq.1998.3499, J. Differ. Equations 151 (1999), 231-251. (1999) Zbl0921.35017MR1669570DOI10.1006/jdeq.1998.3499
  6. Conti, M., Pata, V., 10.1007/s00033-019-1229-5, Z. Angew. Math. Phys. 71 (2020), Article ID 6, 21 pages. (2020) Zbl1430.35030MR4041122DOI10.1007/s00033-019-1229-5
  7. D'Abbicco, M., 10.1016/j.na.2013.09.006, Nonlinear Anal., Theory Methods Appl., Ser. A 95 (2014), 130-145. (2014) Zbl1284.35286MR3130512DOI10.1016/j.na.2013.09.006
  8. D'Abbicco, M., Lucente, S., 10.1007/s00033-016-0655-x, Z. Angew. Math. Phys. 67 (2016), Article ID 60, 18 pages. (2016) Zbl1361.35116MR3493963DOI10.1007/s00033-016-0655-x
  9. Douglis, A., 10.1002/cpa.3160140307, Commun. Pure Appl. Math. 14 (1961), 267-284. (1961) Zbl0117.31102MR0139848DOI10.1002/cpa.3160140307
  10. Duvaut, G., Lions, J. L., 10.1007/978-3-642-66165-5, Grundlehren der mathematischen Wissenschaften 219. Springer, Berlin (1976). (1976) Zbl0331.35002MR0521262DOI10.1007/978-3-642-66165-5
  11. Ekinci, F., Pişkin, E., Boulaaras, S. M., Mekawy, I., 10.1155/2021/4316238, J. Funct. Spaces 2021 (2021), Article ID 4316238, 10 pages. (2021) Zbl1472.35239MR4283631DOI10.1155/2021/4316238
  12. Fino, A. Z., 10.1016/j.na.2011.01.039, Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 5495-5505. (2011) Zbl1222.35025MR2819292DOI10.1016/j.na.2011.01.039
  13. Gripenberg, G., 10.1006/jdeq.1993.1035, J. Differ. Equations 102 (1993), 382-390. (1993) Zbl0780.45012MR1216735DOI10.1006/jdeq.1993.1035
  14. Gür, Ş., Uysal, M. E., 10.3906/mat-1706-30, Turk. J. Math. 42 (2018), 904-910. (2018) Zbl1424.35261MR3804959DOI10.3906/mat-1706-30
  15. Han, X., Wang, M., 10.1016/j.jfranklin.2010.02.010, J. Franklin Inst. 347 (2010), 806-817. (2010) Zbl1286.35148MR2645392DOI10.1016/j.jfranklin.2010.02.010
  16. Hao, J., Wei, H., 10.1186/s13661-017-0796-7, Bound. Value Probl. 2017 (2017), Article ID 65, 12 pages. (2017) Zbl1379.35192MR3647200DOI10.1186/s13661-017-0796-7
  17. Hassan, J. H., Messaoudi, S. A., 10.3233/ASY-201661, Asymptotic Anal. 125 (2021), 365-388. (2021) MR4374601DOI10.3233/ASY-201661
  18. Hrusa, W. J., 10.1137/0516007, SIAM J. Math. Anal. 16 (1985), 110-134. (1985) Zbl0571.45007MR0772871DOI10.1137/0516007
  19. Jleli, M., Samet, B., Vetro, C., 10.3390/sym12101609, Symmetry 12 (2020), Article ID 1609, 12 pages. (2020) DOI10.3390/sym12101609
  20. John, F., 10.1002/cpa.3160130402, Commun. Pure Appl. Math. 13 (1960), 551-586. (1960) Zbl0097.08101MR130456DOI10.1002/cpa.3160130402
  21. Kaddour, T. H., Reissig, M., 10.3934/cpaa.2021057, Commun. Pure Appl. Anal. 20 (2021), 2039-2064. (2021) Zbl1466.35264MR4259639DOI10.3934/cpaa.2021057
  22. Kafini, M., Messaoudi, S. A., 10.1016/j.aml.2007.07.004, Appl. Math. Lett. 21 (2008), 549-553. (2008) Zbl1149.35076MR2412376DOI10.1016/j.aml.2007.07.004
  23. Kafini, M., Mustafa, M. I., 10.1016/j.nonrwa.2014.04.005, Nonlinear Anal., Real World Appl. 20 (2014), 14-20. (2014) Zbl1295.35129MR3233895DOI10.1016/j.nonrwa.2014.04.005
  24. Li, Q., He, L., 10.1186/s13661-018-1072-1, Bound. Value Probl. 2018 (2018), Article ID 153, 22 pages. (2018) MR3859565DOI10.1186/s13661-018-1072-1
  25. Lions, J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Etudes mathematiques. Dunod, Paris (1969), French. (1969) Zbl0189.40603MR0259693
  26. Long, N. T., Dinh, A. P. N., Truong, L. X., 10.1080/01630560802605955, Numer. Funct. Anal. Optim. 29 (2008), 1363-1393. (2008) Zbl1162.35053MR2479113DOI10.1080/01630560802605955
  27. Mesloub, F., Boulaaras, S., 10.1007/s12190-017-1161-9, J. Appl. Math. Comput. 58 (2018), 647-665. (2018) Zbl1403.35050MR3847059DOI10.1007/s12190-017-1161-9
  28. Messaoudi, S. A., 10.1002/mana.200310104, Math. Nachr. 260 (2003), 58-66. (2003) Zbl1035.35082MR2017703DOI10.1002/mana.200310104
  29. Messaoudi, S. A., 10.1016/j.na.2007.08.035, Nonlinear Anal., Theory Methods Appl., Ser. A 69 (2008), 2589-2598. (2008) Zbl1154.35066MR2446355DOI10.1016/j.na.2007.08.035
  30. Mustafa, M. I., 10.1016/j.jmaa.2017.08.019, J. Math. Anal. Appl. 457 (2018), 134-152. (2018) Zbl1379.35028MR3702699DOI10.1016/j.jmaa.2017.08.019
  31. Mustafa, M. I., 10.1002/mma.4604, Math. Methods Appl. Sci. 41 (2018), 192-204. (2018) Zbl1391.35058MR3745365DOI10.1002/mma.4604
  32. Ngoc, L. T. P., Quynh, D. T. N., Triet, N. A., Long, N. T., Linear approximation and asymptotic expansion associated to the Robin-Dirichlet problem for a Kirchhoff-Carrier equation with a viscoelastic term, Kyungpook Math. J. 59 (2019), 735-769. (2019) MR4057771
  33. Pan, J. Q., 10.1016/j.na.2006.09.017, Nonlinear Anal., Theory Methods Appl., Ser. A 67 (2007), 2081-2090. (2007) Zbl1123.35026MR2331859DOI10.1016/j.na.2006.09.017
  34. Quynh, D. T. N., Nam, B. D., Thanh, L. T. M., Dung, T. T. M., Nhan, N. H., 10.1155/2021/9917271, Math. Probl. Eng. 2021 (2021), Article ID 9917271, 27 pages. (2021) MR4274176DOI10.1155/2021/9917271
  35. Shang, Y., Guo, B., On the problem of the existence of global solutions for a class of nonlinear convolutional intergro-differential equations of pseudoparabolic type, Acta Math. Appl. Sin. 26 (2003), 511-524 Chinese. (2003) Zbl1057.45004MR2022221

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.