Displaying similar documents to “Continuous dependence and general decay of solutions for a wave equation with a nonlinear memory term”

On the nonlinear stabilization of the wave equation

Aissa Guesmia (1998)

Annales Polonici Mathematici

Similarity:

We obtain a precise decay estimate of the energy of the solutions to the initial boundary value problem for the wave equation with nonlinear internal and boundary feedbacks. We show that a judicious choice of the feedbacks leads to fast energy decay.

Blow-up of solutions for a viscoelastic equation with nonlinear damping

Yang Zhifeng (2008)

Open Mathematics

Similarity:

The initial boundary value problem for a viscoelastic equation with nonlinear damping in a bounded domain is considered. By modifying the method, which is put forward by Li, Tasi and Vitillaro, we sententiously proved that, under certain conditions, any solution blows up in finite time. The estimates of the life-span of solutions are also given. We generalize some earlier results concerning this equation.

On a system of nonlinear wave equations with the Kirchhoff-Carrier and Balakrishnan-Taylor terms

Bui Duc Nam, Nguyen Huu Nhan, Le Thi Phuong Ngoc, Nguyen Thanh Long (2022)

Mathematica Bohemica

Similarity:

We study a system of nonlinear wave equations of the Kirchhoff-Carrier type containing a variant of the Balakrishnan-Taylor damping in nonlinear terms. By the linearization method together with the Faedo-Galerkin method, we prove the local existence and uniqueness of a weak solution. On the other hand, by constructing a suitable Lyapunov functional, a sufficient condition is also established to obtain the exponential decay of weak solutions.

Global in time solvability of the initial boundary value problem for some nonlinear dissipative evolution equations

Yoshihiro Shibata (1993)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The global in time solvability of the one-dimensional nonlinear equations of thermoelasticity, equations of viscoelasticity and nonlinear wave equations in several space dimensions with some boundary dissipation is discussed. The blow up of the solutions which might be possible even for small data is excluded by allowing for a certain dissipative mechanism.