Highly robust training of regularizedradial basis function networks
Jan Kalina; Petra Vidnerová; Patrik Janáček
Kybernetika (2024)
- Issue: 1, page 38-59
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topKalina, Jan, Vidnerová, Petra, and Janáček, Patrik. "Highly robust training of regularizedradial basis function networks." Kybernetika (2024): 38-59. <http://eudml.org/doc/299573>.
@article{Kalina2024,
abstract = {Radial basis function (RBF) networks represent established tools for nonlinear regression modeling with numerous applications in various fields. Because their standard training is vulnerable with respect to the presence of outliers in the data, several robust methods for RBF network training have been proposed recently. This paper is interested in robust regularized RBF networks. A robust inter-quantile version of RBF networks based on trimmed least squares is proposed here. Then, a systematic comparison of robust regularized RBF networks follows, which is evaluated over a set of 405 networks trained using various combinations of robustness and regularization types. The experiments proceed with a particular focus on the effect of variable selection, which is performed by means of a backward procedure, on the optimal number of RBF units. The regularized inter-quantile RBF networks based on trimmed least squares turn out to outperform the competing approaches in the experiments if a highly robust prediction error measure is considered.},
author = {Kalina, Jan, Vidnerová, Petra, Janáček, Patrik},
journal = {Kybernetika},
keywords = {regression neural networks; robust training; effective regularization; quantile regression; robustness},
language = {eng},
number = {1},
pages = {38-59},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Highly robust training of regularizedradial basis function networks},
url = {http://eudml.org/doc/299573},
year = {2024},
}
TY - JOUR
AU - Kalina, Jan
AU - Vidnerová, Petra
AU - Janáček, Patrik
TI - Highly robust training of regularizedradial basis function networks
JO - Kybernetika
PY - 2024
PB - Institute of Information Theory and Automation AS CR
IS - 1
SP - 38
EP - 59
AB - Radial basis function (RBF) networks represent established tools for nonlinear regression modeling with numerous applications in various fields. Because their standard training is vulnerable with respect to the presence of outliers in the data, several robust methods for RBF network training have been proposed recently. This paper is interested in robust regularized RBF networks. A robust inter-quantile version of RBF networks based on trimmed least squares is proposed here. Then, a systematic comparison of robust regularized RBF networks follows, which is evaluated over a set of 405 networks trained using various combinations of robustness and regularization types. The experiments proceed with a particular focus on the effect of variable selection, which is performed by means of a backward procedure, on the optimal number of RBF units. The regularized inter-quantile RBF networks based on trimmed least squares turn out to outperform the competing approaches in the experiments if a highly robust prediction error measure is considered.
LA - eng
KW - regression neural networks; robust training; effective regularization; quantile regression; robustness
UR - http://eudml.org/doc/299573
ER -
References
top- Blokdyk, G., Artificial Neural Network: A Complete Guide., Createspace Independent Publishing Platform, Scotts Valey 2017.
- Borş, A. G., Pitas, I., Robust RBF networks., In: Radial basis function networks 1. (R. J. Howlett, L. C. Jain, and J. Kacprzyk, eds.). Recent developments in theory and applications, Physica Verlag Rudolf Liebing KG, Vienna 2001, pp. 123-133.
- Boudt, K., Rousseeuw, P. J., Vanduffel, S., Verdonck, T., , Statist. Computing 30 (2020), 113-128. MR4057474DOI
- Chatterjee, S., Hadi, A. S., Regression Analysis by Example. (Fifth edition.), Wiley, Hoboken 2012.
- Cheng, Y. B., Chen, X. H., Li, H. L., Cheng, Z. Y., al., R. Jiang et, , Math. Problems Engrg. (2018), 7509046. MR3816161DOI
- Chollet, F., Keras.
- Dodge, Y., J, Jurečková, Adaptive Regression., Springer, New York 2000. MR1932533
- Dong, J., Zhao, Y., Liu, C., Han, Z. F., Leung, C. S., , Neurocomputing 339 (2019), 217-231. DOI
- Dua, D., Graff, C., UCI Machine Learning Repository.
- Egrioglu, E., Bas, E., Karahasan, O., , Granular Comput. 8 (2023), 491-501. DOI
- Fath, A. H., Madanifar, F., Abbasi, M., , Petroleum 6 (2020), 80-91. DOI
- Hallin, M., Paindaveine, D., Šiman, M., , Ann. Statist. 38 (2010), 635-669. Zbl1183.62088MR2604670DOI
- Han, I., Qian, X., Huang, H., Huang, T., , Neurocomputing 450 (2021), 253-263. DOI
- Hastie, T., Tibshirani, R., Friedman, J., The Elements of Statistical Learning: Data Mining, Inference, and Prediction. (Second edition.)., Springer, New York 2009. MR2722294
- Jurečková, J., Picek, J., Schindler, M., Robust Statistical Methods with R. (Second edition.), Chapman and Hall/CRC, Boca Raton 2019. MR3967085
- Kalina, J., Tichavský, J., , Measurement Sci. Rev. 20 (2020), 6-14. DOI
- Kalina, J., Neoral, A., Vidnerová, P., , Int. J. Neural Syst. 31 (2021), 2150020. DOI
- Kalina, J., Tumpach, J., Holeňa, M., , In: 2000 International Joint Conference on Neural Networks (IJCNN), IEEE 2022. DOI
- Karar, M. E., , Int. J. Adaptive Control Signal Process. 32 (2018), 1040-1051. MR3826364DOI
- Khan, I. A., Hussain, T., Ullah, A., Rho, S., Lee, M., M., Baik, S. W., , Sensors 20 (2020), 1399. DOI
- Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S., Self-normalizing neural networks., In: NIPS'17: Proc. 31st International Conference on Neural Information Processing Systems, Curran Associates, New York 2017, pp. 972-981.
- Knefati, M. A., Chauvet, P. E., N'Guyen, S., Daya, B., , Neural Process. Lett. 43 (2016), 17-30. DOI
- Koenker, R., , Annual Rev. Econom. 9 (2917), 155-176. MR2268657DOI
- Kordos, M., Rusiecki, A., , Soft Comput. 20 (2016), 46-65. DOI
- Lee, C. C., Chung, P. C., Tsai, J. R., Chang, C. I., , IEEE Trans. Systems Man Cybernet. B 29 (1999), 674-685. DOI
- Li, X., Sun, Y., , Neural Computing Appl. 33 (2021), 8227-8235. DOI
- Liu, Z., Leung, C. S., So, H. C., , Neurocomputing 532 (2023), 77-93. DOI
- Standards, National Institute of, (NIST), Technology, Nonlinear Regression Datasets.
- Paul, C., Vishwakarma, G. K., , Commun. Statist. Simul. Comput. 46 (2017), 6772-6789. MR3764938DOI
- Petneházi, G., , Machine Learning Appl. 6 (2021), 100096. DOI
- Poggio, T., Smale, S., , Notices Amer. Math. Soc. 50 (2003), 537-544. MR1968413DOI
- Procházka, B., , Comput. Statist. Data Anal. 6 (1988), 385-391. MR0947590DOI
- Que, Q., Belkin, M., , IEEE Trans. Pattern Anal. Machine Intell. 42 (2020), 1856-1867. DOI
- Romano, Y., Patterson, E., Candès, E. J., , ArXiv 2019. DOI
- Rusiecki, A., , Electron. Lett. 55 (2019), 319-320. DOI
- Rusiecki, A., , Neurocomputing 120 (2013), 624-632. DOI
- Saleh, A. K. M. E., Picek, J., Kalina, J., , Metrika 75 (2012), 311-328. MR2909549DOI
- Seghouane, A. K., Shokouhi, N., , IEEE Trans. Cybernet. 51 (2021), 2847-2856. DOI
- Šíma, J., Vidnerová, P., Mrázek, V., , Lecture Notes Computer Sci. 14263 (2023), 186-198. DOI
- Su, M. J., Deng, W., , Lecture Notes Computer Sci. 4113 (2006), 280-285. DOI
- Sze, V., Chen, Y. B., Yang, T. J., Emer, J. S., Efficient Processing of Deep Neural Networks., Morgan and Claypool, San Rafael 2020.
- Tukey, J., , Biometrics 5 (1949), 99-114. MR0030734DOI
- Ullah, I., Youn, H. Y., Han, Y. H., An efficient data aggregation and outlier detection scheme based on radial basis function neural network for WSN., J. Ambient Intell. Humanized Comput., in press (2022).
- Víšek, J.Á., Consistency of the least weighted squares under heteroscedasticity., Kybernetika 47 (2011), 179-206. Zbl1228.62026MR2828572
- Werner, T., , ArXiv 2021. MR4549754DOI
- Wilcox, R. R., Introduction to Robust Estimation and Hypothesis Testing. Fourth edition., Academic Pres, London 2017. MR3642283
- Yang, C., Oh, S. K., Pedrycz, W., Fu, Z., Yang, B., , IEEE Trans. Fuzzy Systems 29 (2021), 2506-2520. DOI
- Yerpude, P., Gudur, V., , Int. J. Data Mining Knowledge Management Process 7 (2017), 43-58. DOI
- Zhang, D., Zang, G., Li, J., Ma, K., Liu, H., , Computers Electron. Agriculture 154 (2018), 10-17. DOI
- Zuo, Y., , ArXiv 2022. DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.