On relative pure cyclic fields with power integral bases
Mohammed Sahmoudi; Mohammed Elhassani Charkani
Mathematica Bohemica (2023)
- Volume: 148, Issue: 1, page 117-128
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topSahmoudi, Mohammed, and Charkani, Mohammed Elhassani. "On relative pure cyclic fields with power integral bases." Mathematica Bohemica 148.1 (2023): 117-128. <http://eudml.org/doc/299578>.
@article{Sahmoudi2023,
abstract = {Let $L = K(\alpha )$ be an extension of a number field $K$, where $\alpha $ satisfies the monic irreducible polynomial $P(X)=X^\{p\}-\beta $ of prime degree belonging to $\mathfrak \{o\}_\{K\}[X]$ ($\mathfrak \{o\}_K$ is the ring of integers of $K$). The purpose of this paper is to study the monogenity of $L$ over $K$ by a simple and practical version of Dedekind’s criterion characterizing the existence of power integral bases over an arbitrary Dedekind ring by using the Gauss valuation and the index ideal. As an illustration, we determine an integral basis of a pure nonic field $L$ with a pure cubic subfield, which is not necessarily a composite extension of two cubic subfields. We obtain a slightly simpler computation of the discriminant $d_\{L/\mathbb \{Q\}\}$.},
author = {Sahmoudi, Mohammed, Charkani, Mohammed Elhassani},
journal = {Mathematica Bohemica},
keywords = {discrete valuation ring; Dedekind ring; monogenity; relative integral basis; nonic field},
language = {eng},
number = {1},
pages = {117-128},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On relative pure cyclic fields with power integral bases},
url = {http://eudml.org/doc/299578},
volume = {148},
year = {2023},
}
TY - JOUR
AU - Sahmoudi, Mohammed
AU - Charkani, Mohammed Elhassani
TI - On relative pure cyclic fields with power integral bases
JO - Mathematica Bohemica
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 148
IS - 1
SP - 117
EP - 128
AB - Let $L = K(\alpha )$ be an extension of a number field $K$, where $\alpha $ satisfies the monic irreducible polynomial $P(X)=X^{p}-\beta $ of prime degree belonging to $\mathfrak {o}_{K}[X]$ ($\mathfrak {o}_K$ is the ring of integers of $K$). The purpose of this paper is to study the monogenity of $L$ over $K$ by a simple and practical version of Dedekind’s criterion characterizing the existence of power integral bases over an arbitrary Dedekind ring by using the Gauss valuation and the index ideal. As an illustration, we determine an integral basis of a pure nonic field $L$ with a pure cubic subfield, which is not necessarily a composite extension of two cubic subfields. We obtain a slightly simpler computation of the discriminant $d_{L/\mathbb {Q}}$.
LA - eng
KW - discrete valuation ring; Dedekind ring; monogenity; relative integral basis; nonic field
UR - http://eudml.org/doc/299578
ER -
References
top- Atiyah, M. F., Macdonald, I. G., 10.1201/9780429493621, Addison-Wesley, Massachusetts (1969). (1969) Zbl0175.03601MR0242802DOI10.1201/9780429493621
- Cassels, J. W. S., (eds.), A. Fröhlich, Algebraic Number Theory, Academic Press, London (1967). (1967) Zbl0153.07403MR0215665
- Cassou-Noguès, P., Taylor, M. J., 10.1112/jlms/s2-37.121.63, J. Lond. Math. Soc., II. Ser. 37 (1988), 63-72. (1988) Zbl0639.12001MR0921747DOI10.1112/jlms/s2-37.121.63
- Cassou-Noguès, P., Taylor, M. J., Unités modulaires et monogénéité d'anneaux d'entiers, Séminaire de théorie des nombres, Paris 1986-87 Progress in Mathematics 75. Birkhäuser, Boston (1988), 35-64 French. (1988) Zbl0714.11078MR0990505
- Charkani, M. E., Deajim, A., 10.1016/j.jnt.2012.04.006, J. Number Theory 132 (2012), 2267-2276. (2012) Zbl1293.11101MR2944754DOI10.1016/j.jnt.2012.04.006
- Charkani, M. E., Deajim, A., Relative index extensions of Dedekind rings, JP J. Algebra Number Theory Appl. 27 (2012), 73-84. (2012) Zbl1368.11111MR3086201
- Charkani, M. E., Lahlou, O., 10.1155/S0161171203211534, Int. J. Math. Math. Sci. 2003 (2003), 4455-4464. (2003) Zbl1066.11046MR2040142DOI10.1155/S0161171203211534
- Charkani, M. E., Sahmoudi, M., Sextic extension with cubic subfield, JP J. Algebra Number Theory Appl. 34 (2014), 139-150. (2014) Zbl1307.11112
- Charkani, M. E., Sahmoudi, M., Soullami, A., 10.1080/00927872.2021.1872590, Commun. Algebra 49 (2021), 2469-2475. (2021) Zbl1470.11268MR4255019DOI10.1080/00927872.2021.1872590
- Cohen, H., 10.1007/978-3-662-02945-9, Graduate Texts in Mathematics 138. Springer, Berlin (1993). (1993) Zbl0786.11071MR1228206DOI10.1007/978-3-662-02945-9
- Dedekind, R., Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Congruenzen, Abh. Akad. Wiss. Gött., Math-Phys. Kl., 3. Folge 23 (1878), 3-38 German. (1878)
- Fröhlich, A., Taylor, M. J., 10.1017/CBO9781139172165, Cambridge Studies in Advanced Mathematics 27. Cambridge University Press, Cambridge (1993). (1993) Zbl0744.11001MR1215934DOI10.1017/CBO9781139172165
- Gaál, I., Remete, L., 10.14232/actasm-018-080-z, Acta Sci. Math. 85 (2019), 413-429. (2019) Zbl1449.11104MR4154697DOI10.14232/actasm-018-080-z
- Hameed, A., Nakahara, T., Integral bases and relative monogenity of pure octic fields, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 58 (2015), 419-433. (2015) Zbl1363.11094MR3443598
- Ichimura, H., 10.1006/jabr.2000.8467, J. Algebra 235 (2001), 104-112. (2001) Zbl0972.11101MR1807657DOI10.1006/jabr.2000.8467
- Janusz, G. J., 10.1090/gsm/007, Graduate Studies in Mathematics 7. AMS, Providence (1996). (1996) Zbl0854.11001MR1362545DOI10.1090/gsm/007
- Kumar, M., Khanduja, S. K., 10.1080/00927870601168897, Commun. Algebra 35 (2007), 1479-1486. (2007) Zbl1145.11078MR2317622DOI10.1080/00927870601168897
- Lavallee, M. J., Spearman, B. K., Williams, K. S., 10.2996/kmj/1320935550, Kodai Math. J. 34 (2011), 410-425. (2011) Zbl1237.11045MR2855831DOI10.2996/kmj/1320935550
- Mann, H. B., 10.1090/S0002-9939-1958-0093502-7, Proc. Am. Math. Soc. 9 (1958), 167-172. (1958) Zbl0081.26602MR0093502DOI10.1090/S0002-9939-1958-0093502-7
- Narkiewicz, W., 10.1007/978-3-662-07001-7, Springer, Berlin (1990). (1990) Zbl0717.11045MR1055830DOI10.1007/978-3-662-07001-7
- Neukirch, J., 10.1007/978-3-662-03983-0, Grundlehren der Mathematischen Wissenschaften 322. Springer, Berlin (1999). (1999) Zbl0956.11021MR1697859DOI10.1007/978-3-662-03983-0
- Sahmoudi, M., 10.56947/gjom.v4i4.280, Gulf J. Math. 4 (2016), 217-222. (2016) Zbl1366.11107MR3603475DOI10.56947/gjom.v4i4.280
- Sahmoudi, M., Soullami, A., 10.37418/amsj.9.9.40, Adv. Math., Sci. J. 9 (2020), 6817-6827. (2020) DOI10.37418/amsj.9.9.40
- Sahmoudi, M., Soullami, A., 10.5269/bspm.v38i4.40042, Bol. Soc. Parana. Mat. (3) 38 (2020), 175-180. (2020) Zbl1431.35011MR3912302DOI10.5269/bspm.v38i4.40042
- Schmid, P., 10.1007/s00013-004-1227-4, Arch. Math. 84 (2005), 304-310. (2005) Zbl1072.13004MR2135040DOI10.1007/s00013-004-1227-4
- Soullami, A., Sahmoudi, M., Boughaleb, O., 10.1216/rmj.2021.51.1443, Rocky Mt. J. Math. 51 (2021), 1443-1452. (2021) Zbl1469.11414MR4298858DOI10.1216/rmj.2021.51.1443
- Spearman, B. K., Williams, K. S., 10.1007/BF02188204, Acta Math. Hung. 70 (1996), 185-192. (1996) MR1374384DOI10.1007/BF02188204
- Spearman, B. K., Williams, K. S., 10.1155/s0161171203204336, Int. J. Math. Math. Sci. 25 (2003), 1623-1626. (2003) Zbl1064.11070MR1979698DOI10.1155/s0161171203204336
- Washington, L. C., 10.1090/S0002-9939-1976-0399041-9, Proc. Am. Math. Soc. 56 (1976), 93-94. (1976) Zbl0331.12002MR0399041DOI10.1090/S0002-9939-1976-0399041-9
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.