A continuum of path-dependent equilibrium solutions induced by sticky expectations
Pavel Krejčí; Eyram Kwame; Harbir Lamba; Dmitrii Rachinskii; Andrei Zagvozdkin
Applications of Mathematics (2023)
- Volume: 68, Issue: 6, page 751-793
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topKrejčí, Pavel, et al. "A continuum of path-dependent equilibrium solutions induced by sticky expectations." Applications of Mathematics 68.6 (2023): 751-793. <http://eudml.org/doc/299588>.
@article{Krejčí2023,
abstract = {We analyze a simple macroeconomic model where rational inflation expectations are replaced by a boundedly rational, and genuinely sticky, response to changes in the actual inflation rate. The stickiness is introduced in a novel way using a mathematical operator that is amenable to rigorous analysis. We prove that, when exogenous noise is absent from the system, the unique equilibrium of the rational expectations model is replaced by an entire line segment of possible equilibria with the one chosen depending, in a deterministic way, upon the previous states of the system. The agents are sufficiently far-removed from the rational expectations paradigm that problems of indeterminacy do not arise.The response to exogenous noise is far more subtle than in a unique equilibrium model. After sufficiently small shocks the system will indeed revert to the same equilibrium but larger ones will move the system to a different one (at the same model parameters). The path to this new equilibrium may be very long with a highly unpredictable endpoint. At certain model parameters exogenously-triggered runaway inflation can occur. Finally, we analyze a variant model in which the same form of sticky response is introduced into the interest rate rule instead.},
author = {Krejčí, Pavel, Kwame, Eyram, Lamba, Harbir, Rachinskii, Dmitrii, Zagvozdkin, Andrei},
journal = {Applications of Mathematics},
keywords = {macroeconomic model; rational expectation; hysteresis play operator; equilibrium point; path-dependence; sticky inflation},
language = {eng},
number = {6},
pages = {751-793},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A continuum of path-dependent equilibrium solutions induced by sticky expectations},
url = {http://eudml.org/doc/299588},
volume = {68},
year = {2023},
}
TY - JOUR
AU - Krejčí, Pavel
AU - Kwame, Eyram
AU - Lamba, Harbir
AU - Rachinskii, Dmitrii
AU - Zagvozdkin, Andrei
TI - A continuum of path-dependent equilibrium solutions induced by sticky expectations
JO - Applications of Mathematics
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 6
SP - 751
EP - 793
AB - We analyze a simple macroeconomic model where rational inflation expectations are replaced by a boundedly rational, and genuinely sticky, response to changes in the actual inflation rate. The stickiness is introduced in a novel way using a mathematical operator that is amenable to rigorous analysis. We prove that, when exogenous noise is absent from the system, the unique equilibrium of the rational expectations model is replaced by an entire line segment of possible equilibria with the one chosen depending, in a deterministic way, upon the previous states of the system. The agents are sufficiently far-removed from the rational expectations paradigm that problems of indeterminacy do not arise.The response to exogenous noise is far more subtle than in a unique equilibrium model. After sufficiently small shocks the system will indeed revert to the same equilibrium but larger ones will move the system to a different one (at the same model parameters). The path to this new equilibrium may be very long with a highly unpredictable endpoint. At certain model parameters exogenously-triggered runaway inflation can occur. Finally, we analyze a variant model in which the same form of sticky response is introduced into the interest rate rule instead.
LA - eng
KW - macroeconomic model; rational expectation; hysteresis play operator; equilibrium point; path-dependence; sticky inflation
UR - http://eudml.org/doc/299588
ER -
References
top- Anderson, S. P., Palma, A. de, Thisse, J.-F., Discrete choice theory of product differentiation, J. Econ. Literature 31 (1993), 1972. (1993) MR1201148
- Antinolfi, G., Azariadis, C., Bullard, J. B., Monetary policy as equilibrium selection, Review, Federal Reserve Bank of St. Louis 89 (2007), 331-342. (2007)
- Arnold, M., Begun, N., Gurevich, P., Kwame, E., Lamba, H., Rachinskii, D., 10.1137/16M1073522, SIAM J. Appl. Dyn. Syst. 16 (2017), 91-119. (2017) Zbl1361.37076MR3592068DOI10.1137/16M1073522
- Benhabib, J., Farmer, R. E. A., 10.1016/S1574-0048(99)01009-5, Handbook Macroeconomics 1 (1999), 387-448. (1999) DOI10.1016/S1574-0048(99)01009-5
- Bick, A., 10.1016/j.econlet.2010.04.040, Econ. Lett. 108 (2010), 126-129. (2010) DOI10.1016/j.econlet.2010.04.040
- Branch, W. A., 10.1016/j.jedc.2005.11.002, J. Econ. Dyn. Control 31 (2007), 245-276. (2007) Zbl1162.91457DOI10.1016/j.jedc.2005.11.002
- Brock, W. A., Hommes, C. H., 10.2307/2171879, Econometrica 65 (1997), 1059-1095. (1997) Zbl0898.90042MR1475075DOI10.2307/2171879
- Calvo, G. A., 10.1016/0304-3932(83)90060-0, J. Monetary Econ. 12 (1983), 383-398. (1983) DOI10.1016/0304-3932(83)90060-0
- Carroll, C. D., 10.1162/00335530360535207, Q. J. Econ. 118 (2003), 269-298. (2003) Zbl1057.91054DOI10.1162/00335530360535207
- Colander, D., Howitt, P., Kirman, A., Leijonhufvud, A., Mehrling, P., 10.1257/aer.98.2.236, Am. Econ. Rev. 98 (2008), 236-240. (2008) DOI10.1257/aer.98.2.236
- Curtin, R., Inflation expectations and empirical tests: Theoretical models and empirical tests, Inflation Expectations Routledge International Studies in Money and Banking 56. Taylor & Francis, London (2010), 34-61. (2010)
- Grauwe, P. De, 10.1016/j.jebo.2012.02.013, J. Econ. Behavior Organization 83 (2012), 484-501. (2012) DOI10.1016/j.jebo.2012.02.013
- Evans, G. W., McGough, B., Observability and Equilibrium Selection, University of Oregon, Eugene (2015). (2015)
- Frimpong, J. M., Oteng-Abayie, E. F., 10.3844/ajebasp.2010.232.239, Am. J. Econ. Business Administration 2 (2010), 232-239. (2010) DOI10.3844/ajebasp.2010.232.239
- Göcke, M., 10.1111/1467-6419.00163, J. Econ. Surveys 16 (2002), 167-188. (2002) DOI10.1111/1467-6419.00163
- Göcke, M., Werner, L., 10.1111/meca.12074, Metroeconomica 66 (2015), 339-374. (2015) Zbl1420.91093DOI10.1111/meca.12074
- Ishlinskii, A. Y., Some applications of statistical methods to describing deformations of bodies, Izv. AN SSSR, Techn. Ser. 9 (1944), 580-590. (1944)
- Kahneman, D., Tversky, A., 10.2307/1914185, Econometrica 47 (1979), 263-291. (1979) Zbl0411.90012MR3618580DOI10.2307/1914185
- Kaldor, N., 10.2307/2231304, Econ. J. 82 (1972), 1237-1255. (1972) DOI10.2307/2231304
- Khan, M. S., Senhadji, A. S., 10.2307/4621658, IMF Staff Papers 48 (2001), 1-21. (2001) DOI10.2307/4621658
- Krasnosel'skii, M. A., Pokrovskii, A. V., 10.1007/978-3-642-61302-9, Springer, Berlin (1989). (1989) Zbl0665.47038MR0987431DOI10.1007/978-3-642-61302-9
- Krejčí, P., 10.1007/BF01174335, Math. Z. 193 (1986), 247-264. (1986) Zbl0658.35065MR0856153DOI10.1007/BF01174335
- Krejčí, P., Lamba, H., Melnik, S., Rachinskii, D., 10.1103/PhysRevE.90.032822, Phys. Rev. E 90 (2014), Article ID 032822, 12 pages. (2014) DOI10.1103/PhysRevE.90.032822
- Krejčí, P., Lamba, H., Melnik, S., Rachinskii, D., 10.3934/dcdsb.2015.20.2949, Discrete Contin. Dyn. Syst., Ser. B 20 (2015), 2949-2965. (2015) Zbl1335.47043MR3402678DOI10.3934/dcdsb.2015.20.2949
- Krejčí, P., Lamba, H., Monteiro, G. A., Rachinskii, D., 10.21136/MB.2016.18, Math. Bohem. 141 (2016), 261-286. (2016) Zbl1389.34140MR3499787DOI10.21136/MB.2016.18
- Kremer, S., Bick, A., Nautz, D., 10.1007/s00181-012-0553-9, Empir. Econ. 44 (2013), 861-878. (2013) DOI10.1007/s00181-012-0553-9
- Lamba, H., Krejčí, P., Rachinskii, D., 10.1051/mmnp/2019061, Math. Model. Nat. Phenom. 15 (2020), Article ID 49, 24 pages. (2020) Zbl1475.37106MR4173151DOI10.1051/mmnp/2019061
- Mankiw, N. G., Reis, R., 10.1162/003355302320935034, Q. J. Econ. 117 (2002), 1295-1328. (2002) Zbl1032.91094DOI10.1162/003355302320935034
- Mankiw, N. G., Reis, R., Wolfers, J., 10.1086/ma.18.3585256, NBER Macroecon. Annual 18 (2003), 209-248. (2003) DOI10.1086/ma.18.3585256
- Muth, J. F., 10.2307/1909635, Econometrica 29 (1961), 315-335. (1961) DOI10.2307/1909635
- Prandtl, L., 10.1002/zamm.19280080202, Z. Angew. Math. Mech. 8 (1928), 85-106 German 9999JFM99999 54.0847.04. (1928) DOI10.1002/zamm.19280080202
- Robinson, J., History versus equilibrium, Indian Econ. J. 21 (1974), 202. (1974)
- Rudd, J., Whelan, K., 10.1257/000282806776157560, Am. Econ. Rev. 96 (2006), 303-320. (2006) DOI10.1257/000282806776157560
- Setterfield, M., 10.1080/01603477.1997.11490138, J. Post Keynesian Econ. 20 (1997), 47-76. (1997) DOI10.1080/01603477.1997.11490138
- Vinayagathasan, T., 10.1016/j.asieco.2013.04.001, J. Asian Econ. 26 (2013), 31-41. (2013) DOI10.1016/j.asieco.2013.04.001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.