The Kurzweil integral in financial market modeling
Pavel Krejčí; Harbir Lamba; Giselle Antunes Monteiro; Dmitrii Rachinskii
Mathematica Bohemica (2016)
- Volume: 141, Issue: 2, page 261-286
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topKrejčí, Pavel, et al. "The Kurzweil integral in financial market modeling." Mathematica Bohemica 141.2 (2016): 261-286. <http://eudml.org/doc/276984>.
@article{Krejčí2016,
abstract = {Certain financial market strategies are known to exhibit a hysteretic structure similar to the memory observed in plasticity, ferromagnetism, or magnetostriction. The main difference is that in financial markets, the spontaneous occurrence of discontinuities in the time evolution has to be taken into account. We show that one particular market model considered here admits a representation in terms of Prandtl-Ishlinskii hysteresis operators, which are extended in order to include possible discontinuities both in time and in memory. The main analytical tool is the Kurzweil integral formalism, and the main result proves the well-posedness of the process in the space of right-continuous regulated functions.},
author = {Krejčí, Pavel, Lamba, Harbir, Monteiro, Giselle Antunes, Rachinskii, Dmitrii},
journal = {Mathematica Bohemica},
keywords = {hysteresis; Prandtl-Ishlinskii operator; Kurzweil integral; market model},
language = {eng},
number = {2},
pages = {261-286},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The Kurzweil integral in financial market modeling},
url = {http://eudml.org/doc/276984},
volume = {141},
year = {2016},
}
TY - JOUR
AU - Krejčí, Pavel
AU - Lamba, Harbir
AU - Monteiro, Giselle Antunes
AU - Rachinskii, Dmitrii
TI - The Kurzweil integral in financial market modeling
JO - Mathematica Bohemica
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 141
IS - 2
SP - 261
EP - 286
AB - Certain financial market strategies are known to exhibit a hysteretic structure similar to the memory observed in plasticity, ferromagnetism, or magnetostriction. The main difference is that in financial markets, the spontaneous occurrence of discontinuities in the time evolution has to be taken into account. We show that one particular market model considered here admits a representation in terms of Prandtl-Ishlinskii hysteresis operators, which are extended in order to include possible discontinuities both in time and in memory. The main analytical tool is the Kurzweil integral formalism, and the main result proves the well-posedness of the process in the space of right-continuous regulated functions.
LA - eng
KW - hysteresis; Prandtl-Ishlinskii operator; Kurzweil integral; market model
UR - http://eudml.org/doc/276984
ER -
References
top- Janaideh, M. Al, Rakheja, S., Su, C. Y., 10.1109/TMECH.2010.2052366, IEEE/ASME Transactions on Mechatronics 16 (2011), 734-744 10.1109/TMECH.2010.2052366. (2011) DOI10.1109/TMECH.2010.2052366
- Brokate, M., Krejčí, P., 10.1007/s00209-003-0563-6, Math. Z. 245 (2003), 667-688. (2003) Zbl1055.46023MR2020705DOI10.1007/s00209-003-0563-6
- Brokate, M., Sprekels, J., 10.1007/978-1-4612-4048-8_5, Applied Mathematical Sciences 121 Springer, New York (1996). (1996) Zbl0951.74002MR1411908DOI10.1007/978-1-4612-4048-8_5
- Cross, R., Grinfeld, M., Lamba, H., 10.1109/MCS.2008.930445, IEEE Control Systems 29 (2009), 30-43 10.1109/MCS.2008.930445. (2009) MR2477927DOI10.1109/MCS.2008.930445
- Cross, R., Grinfeld, M., Lamba, H., 10.1088/1742-6596/55/1/005, Journal of Physics Conference Series 55 (2006), 55-62 10.1088/1742-6596/55/1/005. (2006) DOI10.1088/1742-6596/55/1/005
- Cross, R., McNamara, H., Pokrovskii, A., Rachinskii, D., 10.1016/j.physb.2007.08.017, Physica B: Condensed Matter. Proc. 6th Int. Symp. on Hysteresis Modeling and Micromagnetics 403 (2008), 231-236 10.1016/j.physb.2007.08.017. (2008) DOI10.1016/j.physb.2007.08.017
- Grinfeld, M., Lamba, H., Cross, R., 10.3934/dcdsb.2013.18.403, Discrete Contin. Dyn. Syst., Ser. B 18 (2013), 403-415. (2013) Zbl1260.91152MR2999083DOI10.3934/dcdsb.2013.18.403
- Ishlinskii, A. Yu., Some applications of statistical methods to describing deformations of bodies, Izv. AN SSSR, Techn. Ser., 9 (1944), 583-590. (1944)
- Krasnosel'skij, M. A., Pokrovskij, A. V., Systems with Hysteresis. Transl. from the Russian, Springer, Berlin (1989). (1989) Zbl0665.47038MR0987431
- Krejčí, P., 10.1088/1742-6596/55/1/014, Journal of Physics: Conference Series 55 (2006), 144-154 10.1088/1742-6596/55/1/014. (2006) DOI10.1088/1742-6596/55/1/014
- Krejčí, P., 10.1007/BF01174335, Math. Z. 193 (1986), 247-264. (1986) MR0856153DOI10.1007/BF01174335
- Krejčí, P., Lamba, H., Melnik, S., Rachinskii, D., 10.3934/dcdsb.2015.20.2949, Discrete Contin. Dyn. Syst., Ser. B 20 (2015), 2949-2965. (2015) Zbl1335.47043MR3402678DOI10.3934/dcdsb.2015.20.2949
- Krejčí, P., Lamba, H., Melnik, S., Rachinskii, D., 10.1103/PhysRevE.90.032822, Phys. Rev. E 90 (2014), 12 pages 10.1103/PhysRevE.90.032822. (2014) DOI10.1103/PhysRevE.90.032822
- Krejčí, P., Laurençot, P., Generalized variational inequalities, J. Convex Anal. 9 (2002), 159-183. (2002) Zbl1001.49014MR1917394
- Kuhnen, K., 10.3166/ejc.9.407-418, Eur. J. Control 9 (2003), 407-418. (2003) Zbl1293.93213DOI10.3166/ejc.9.407-418
- Kurzweil, J., Generalized ordinary differential equations and continuous dependence on a parameter, Czech. Math. J. 7(82) (1957), 418-449. (1957) Zbl0090.30002MR0111875
- Prandtl, L., 10.1002/zamm.19280080202, Z. Angew. Math. Mech. 8 German (1928), 85-106. (1928) DOI10.1002/zamm.19280080202
- Schwabik, Š., On a modified sum integral of Stieltjes type, Čas. Pěstování Mat. 98 (1973), 274-277. (1973) Zbl0266.26007MR0322114
- Schwabik, Š., Tvrdý, M., Vejvoda, O., Differential and Integral Equations. Boundary Value Problems and Adjoints, Czechoslovak Academy of Sciences D. Reidel Publishing Company, Dordrecht (1979). (1979) Zbl0417.45001MR0542283
- Tvrdý, M., Regulated functions and the Perron-Stieltjes integral, Čas. Pěstování Mat. 114 (1989), 187-209. (1989) MR1063765
Citations in EuDML Documents
top- Pavel Krejčí, Eyram Kwame, Harbir Lamba, Dmitrii Rachinskii, Andrei Zagvozdkin, A continuum of path-dependent equilibrium solutions induced by sticky expectations
- María Guadalupe Morales Macías, Cauchy problem with Denjoy-Stieltjes integral
- Tomáš W. Pavlíček, Ninety-five years of Jaroslav Kurzweil
- Umi Mahnuna Hanung, Role of the Harnack extension principle in the Kurzweil-Stieltjes integral
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.