The Kurzweil integral in financial market modeling

Pavel Krejčí; Harbir Lamba; Giselle Antunes Monteiro; Dmitrii Rachinskii

Mathematica Bohemica (2016)

  • Volume: 141, Issue: 2, page 261-286
  • ISSN: 0862-7959

Abstract

top
Certain financial market strategies are known to exhibit a hysteretic structure similar to the memory observed in plasticity, ferromagnetism, or magnetostriction. The main difference is that in financial markets, the spontaneous occurrence of discontinuities in the time evolution has to be taken into account. We show that one particular market model considered here admits a representation in terms of Prandtl-Ishlinskii hysteresis operators, which are extended in order to include possible discontinuities both in time and in memory. The main analytical tool is the Kurzweil integral formalism, and the main result proves the well-posedness of the process in the space of right-continuous regulated functions.

How to cite

top

Krejčí, Pavel, et al. "The Kurzweil integral in financial market modeling." Mathematica Bohemica 141.2 (2016): 261-286. <http://eudml.org/doc/276984>.

@article{Krejčí2016,
abstract = {Certain financial market strategies are known to exhibit a hysteretic structure similar to the memory observed in plasticity, ferromagnetism, or magnetostriction. The main difference is that in financial markets, the spontaneous occurrence of discontinuities in the time evolution has to be taken into account. We show that one particular market model considered here admits a representation in terms of Prandtl-Ishlinskii hysteresis operators, which are extended in order to include possible discontinuities both in time and in memory. The main analytical tool is the Kurzweil integral formalism, and the main result proves the well-posedness of the process in the space of right-continuous regulated functions.},
author = {Krejčí, Pavel, Lamba, Harbir, Monteiro, Giselle Antunes, Rachinskii, Dmitrii},
journal = {Mathematica Bohemica},
keywords = {hysteresis; Prandtl-Ishlinskii operator; Kurzweil integral; market model},
language = {eng},
number = {2},
pages = {261-286},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The Kurzweil integral in financial market modeling},
url = {http://eudml.org/doc/276984},
volume = {141},
year = {2016},
}

TY - JOUR
AU - Krejčí, Pavel
AU - Lamba, Harbir
AU - Monteiro, Giselle Antunes
AU - Rachinskii, Dmitrii
TI - The Kurzweil integral in financial market modeling
JO - Mathematica Bohemica
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 141
IS - 2
SP - 261
EP - 286
AB - Certain financial market strategies are known to exhibit a hysteretic structure similar to the memory observed in plasticity, ferromagnetism, or magnetostriction. The main difference is that in financial markets, the spontaneous occurrence of discontinuities in the time evolution has to be taken into account. We show that one particular market model considered here admits a representation in terms of Prandtl-Ishlinskii hysteresis operators, which are extended in order to include possible discontinuities both in time and in memory. The main analytical tool is the Kurzweil integral formalism, and the main result proves the well-posedness of the process in the space of right-continuous regulated functions.
LA - eng
KW - hysteresis; Prandtl-Ishlinskii operator; Kurzweil integral; market model
UR - http://eudml.org/doc/276984
ER -

References

top
  1. Janaideh, M. Al, Rakheja, S., Su, C. Y., 10.1109/TMECH.2010.2052366, IEEE/ASME Transactions on Mechatronics 16 (2011), 734-744 10.1109/TMECH.2010.2052366. (2011) DOI10.1109/TMECH.2010.2052366
  2. Brokate, M., Krejčí, P., 10.1007/s00209-003-0563-6, Math. Z. 245 (2003), 667-688. (2003) Zbl1055.46023MR2020705DOI10.1007/s00209-003-0563-6
  3. Brokate, M., Sprekels, J., 10.1007/978-1-4612-4048-8_5, Applied Mathematical Sciences 121 Springer, New York (1996). (1996) Zbl0951.74002MR1411908DOI10.1007/978-1-4612-4048-8_5
  4. Cross, R., Grinfeld, M., Lamba, H., 10.1109/MCS.2008.930445, IEEE Control Systems 29 (2009), 30-43 10.1109/MCS.2008.930445. (2009) MR2477927DOI10.1109/MCS.2008.930445
  5. Cross, R., Grinfeld, M., Lamba, H., 10.1088/1742-6596/55/1/005, Journal of Physics Conference Series 55 (2006), 55-62 10.1088/1742-6596/55/1/005. (2006) DOI10.1088/1742-6596/55/1/005
  6. Cross, R., McNamara, H., Pokrovskii, A., Rachinskii, D., 10.1016/j.physb.2007.08.017, Physica B: Condensed Matter. Proc. 6th Int. Symp. on Hysteresis Modeling and Micromagnetics 403 (2008), 231-236 10.1016/j.physb.2007.08.017. (2008) DOI10.1016/j.physb.2007.08.017
  7. Grinfeld, M., Lamba, H., Cross, R., 10.3934/dcdsb.2013.18.403, Discrete Contin. Dyn. Syst., Ser. B 18 (2013), 403-415. (2013) Zbl1260.91152MR2999083DOI10.3934/dcdsb.2013.18.403
  8. Ishlinskii, A. Yu., Some applications of statistical methods to describing deformations of bodies, Izv. AN SSSR, Techn. Ser., 9 (1944), 583-590. (1944) 
  9. Krasnosel'skij, M. A., Pokrovskij, A. V., Systems with Hysteresis. Transl. from the Russian, Springer, Berlin (1989). (1989) Zbl0665.47038MR0987431
  10. Krejčí, P., 10.1088/1742-6596/55/1/014, Journal of Physics: Conference Series 55 (2006), 144-154 10.1088/1742-6596/55/1/014. (2006) DOI10.1088/1742-6596/55/1/014
  11. Krejčí, P., 10.1007/BF01174335, Math. Z. 193 (1986), 247-264. (1986) MR0856153DOI10.1007/BF01174335
  12. Krejčí, P., Lamba, H., Melnik, S., Rachinskii, D., 10.3934/dcdsb.2015.20.2949, Discrete Contin. Dyn. Syst., Ser. B 20 (2015), 2949-2965. (2015) Zbl1335.47043MR3402678DOI10.3934/dcdsb.2015.20.2949
  13. Krejčí, P., Lamba, H., Melnik, S., Rachinskii, D., 10.1103/PhysRevE.90.032822, Phys. Rev. E 90 (2014), 12 pages 10.1103/PhysRevE.90.032822. (2014) DOI10.1103/PhysRevE.90.032822
  14. Krejčí, P., Laurençot, P., Generalized variational inequalities, J. Convex Anal. 9 (2002), 159-183. (2002) Zbl1001.49014MR1917394
  15. Kuhnen, K., 10.3166/ejc.9.407-418, Eur. J. Control 9 (2003), 407-418. (2003) Zbl1293.93213DOI10.3166/ejc.9.407-418
  16. Kurzweil, J., Generalized ordinary differential equations and continuous dependence on a parameter, Czech. Math. J. 7(82) (1957), 418-449. (1957) Zbl0090.30002MR0111875
  17. Prandtl, L., 10.1002/zamm.19280080202, Z. Angew. Math. Mech. 8 German (1928), 85-106. (1928) DOI10.1002/zamm.19280080202
  18. Schwabik, Š., On a modified sum integral of Stieltjes type, Čas. Pěstování Mat. 98 (1973), 274-277. (1973) Zbl0266.26007MR0322114
  19. Schwabik, Š., Tvrdý, M., Vejvoda, O., Differential and Integral Equations. Boundary Value Problems and Adjoints, Czechoslovak Academy of Sciences D. Reidel Publishing Company, Dordrecht (1979). (1979) Zbl0417.45001MR0542283
  20. Tvrdý, M., Regulated functions and the Perron-Stieltjes integral, Čas. Pěstování Mat. 114 (1989), 187-209. (1989) MR1063765

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.