Cauchy problem with Denjoy-Stieltjes integral
María Guadalupe Morales Macías
Mathematica Bohemica (2024)
- Volume: 149, Issue: 4, page 471-490
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topMorales Macías, María Guadalupe. "Cauchy problem with Denjoy-Stieltjes integral." Mathematica Bohemica 149.4 (2024): 471-490. <http://eudml.org/doc/299610>.
@article{MoralesMacías2024,
abstract = {This work is devoted to analyzing the existence of the Cauchy fractional-type problems considering the Riemann-Liouville derivative (in the distributional Denjoy integral sense) of real order $n\ge 1$. These kinds of equations are a generalization of the measure differential equations. Our results extend A. A. Kilbas, H. M. Srivastava, J. J. Trujillo (2006) and H. Zhou, G. Ye, W. Liu, O. Wang (2015).},
author = {Morales Macías, María Guadalupe},
journal = {Mathematica Bohemica},
keywords = {fractional measure differential equation; Cauchy problem; Riemann-Liouville fractional integral and derivative; distributional Denjoy integral},
language = {eng},
number = {4},
pages = {471-490},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Cauchy problem with Denjoy-Stieltjes integral},
url = {http://eudml.org/doc/299610},
volume = {149},
year = {2024},
}
TY - JOUR
AU - Morales Macías, María Guadalupe
TI - Cauchy problem with Denjoy-Stieltjes integral
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 4
SP - 471
EP - 490
AB - This work is devoted to analyzing the existence of the Cauchy fractional-type problems considering the Riemann-Liouville derivative (in the distributional Denjoy integral sense) of real order $n\ge 1$. These kinds of equations are a generalization of the measure differential equations. Our results extend A. A. Kilbas, H. M. Srivastava, J. J. Trujillo (2006) and H. Zhou, G. Ye, W. Liu, O. Wang (2015).
LA - eng
KW - fractional measure differential equation; Cauchy problem; Riemann-Liouville fractional integral and derivative; distributional Denjoy integral
UR - http://eudml.org/doc/299610
ER -
References
top- Ang, D. D., Schmitt, K., Vy, L. K., 10.36045/bbms/1105733252, Bull. Belg. Math. Soc. - Simon Stevin 4 (1997), 355-371. (1997) Zbl0929.26009MR1457075DOI10.36045/bbms/1105733252
- Atangana, A., 10.1016/j.physa.2018.03.056, Physica A 505 (2018), 688-706. (2018) Zbl07550314MR3807252DOI10.1016/j.physa.2018.03.056
- Atangana, A., Gómez-Aguilar, J. F., 10.1140/epjp/i2018-12021-3, Eur. Phys. J. Plus 133 (2018), Article ID 133, 22 pages. (2018) DOI10.1140/epjp/i2018-12021-3
- Atangana, A., Gómez-Aguilar, J. F., 10.1002/num.22195, Numer. Methods Partial Differ. Equations 34 (2018), 1502-1523. (2018) Zbl1417.65113MR3843531DOI10.1002/num.22195
- Atangana, A., Qureshi, S., 10.1016/j.chaos.2019.04.020, Chaos Solitons Fractals 123 (2019), 320-337. (2019) Zbl1448.65268MR3941450DOI10.1016/j.chaos.2019.04.020
- Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J. J., 10.1142/10044, Series on Complexity, Nonlinearity and Chaos 3. World Scientific, Hackensack (2012). (2012) Zbl1248.26011MR2894576DOI10.1142/10044
- Barrett, J. H., 10.4153/CJM-1954-058-2, Can. J. Math. 6 (1954), 529-541. (1954) Zbl0058.10702MR0064936DOI10.4153/CJM-1954-058-2
- Bongiorno, B., Relatively weakly compact sets in the Denjoy space, J. Math. Study 27 (1994), 37-44. (1994) Zbl1045.26502MR1318256
- Bongiorno, B., Panchapagesan, T. V., 10.2307/44152670, Real Anal. Exch. 21 (1995/96), 604-614. (1995) Zbl0879.26028MR1407272DOI10.2307/44152670
- Bonotto, E. M., Federson, M., Muldowney, P., 10.14321/realanalexch.36.1.0107, Real Anal. Exch. 36 (2010/11), 107-148. (2010) Zbl1246.28008MR3016407DOI10.14321/realanalexch.36.1.0107
- Carothers, N. L., 10.1017/CBO9780511814228, Cambridge University Press, Cambridge (2000). (2000) Zbl0997.26003MR1772332DOI10.1017/CBO9780511814228
- Chew, T. S., Flordeliza, F., 10.57262/die/1371225020, Differ. Integral Equ. 4 (1991), 861-868. (1991) Zbl0733.34004MR1108065DOI10.57262/die/1371225020
- Das, P. C., Sharma, R. R., 10.1137/0309005, SIAM. J. Control 9 (1971), 43-61. (1971) Zbl0283.49003MR0274898DOI10.1137/0309005
- Das, P. C., Sharma, R. R., 10.21136/CMJ.1972.101082, Czech. Math. J. 22 (1972), 145-158. (1972) Zbl0241.34070MR0304815DOI10.21136/CMJ.1972.101082
- Diethelm, K., 10.1007/978-3-642-14574-2, Lecture Notes in Mathematics 2004. Springer, Berlin (2010). (2010) Zbl1215.34001MR2680847DOI10.1007/978-3-642-14574-2
- Diethelm, K., Freed, A. D., 10.1007/978-3-642-60185-9_24, Scientific Computing in Chemical Engineering II Springer, Berlin (1999). (1999) DOI10.1007/978-3-642-60185-9_24
- Duistermaat, J. J., Kolk, J. A. C., 10.1007/978-0-8176-4675-2, Cornerstones. Birkhäuser, Boston (2010). (2010) Zbl1213.46001MR2680692DOI10.1007/978-0-8176-4675-2
- Gómez-Aguilar, J. F., Atangana, A., 10.1140/epjp/i2017-11293-3, Eur. Phys. J. Plus 132 (2017), Article ID 13, 21 pages. (2017) DOI10.1140/epjp/i2017-11293-3
- Gordon, R. A., 10.1090/gsm/004, Graduate Studies in Mathematics 4. AMS, Providence (1994). (1994) Zbl0807.26004MR1288751DOI10.1090/gsm/004
- Hayek, N., Trujillo, J., Rivero, M., Bonilla, B., Moreno, J. C., 10.1080/00036819808840696, Appl. Anal. 70 (1999), 347-361. (1999) Zbl1030.34003MR1688864DOI10.1080/00036819808840696
- (ed.), R. Hilfer, 10.1142/3779, World Scientific, Singapore (2000). (2000) Zbl0998.26002MR1890104DOI10.1142/3779
- Hörmander, L., 10.1007/978-3-642-96750-4, Grundlehren der Mathematischen Wissenschaften 256. Springer, Berlin (1990). (1990) Zbl0712.35001MR1996773DOI10.1007/978-3-642-96750-4
- Kilbas, A. A., Bonilla, B., Trujillo, J. J., 10.1515/dema-2000-0315, Demonstr. Math. 33 (2000), 583-602. (2000) Zbl0964.34004MR1791723DOI10.1515/dema-2000-0315
- Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., 10.1016/s0304-0208(06)x8001-5, North-Holland Mathematics Studies 204. Elsevier, Amsterdam (2006). (2006) Zbl1092.45003MR2218073DOI10.1016/s0304-0208(06)x8001-5
- Krejčí, P., Lamba, H., Monteiro, G. A., Rachinskii, D., 10.21136/MB.2016.18, Math. Bohem. 141 (2016), 261-286. (2016) Zbl1389.34140MR3499787DOI10.21136/MB.2016.18
- Mainardi, F., 10.1007/978-3-7091-2664-6_7, Fractals and Fractional Calculus in Continuum Mechanics CISM Courses and Lectures 378. Springer, Vienna (1997), 291-348. (1997) MR1611587DOI10.1007/978-3-7091-2664-6_7
- Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York (1993). (1993) Zbl0789.26002MR1219954
- Monteiro, G. A., Satco, B., 10.14232/ejqtde.2017.1.7, Electron. J. Qual. Theory Differ. Equ. 2017 (2017), Article ID 7, 26 pages. (2017) Zbl1413.34062MR3606985DOI10.14232/ejqtde.2017.1.7
- Monteiro, G. A., Slavík, A., Tvrdý, M., 10.1142/9432, Series in Real Analysis 15. World Scientific, Singapore (2019). (2019) Zbl1437.28001MR3839599DOI10.1142/9432
- Morales, M. G., Došlá, Z., 10.1216/jie.2021.33.497, J. Integral Equations Appl. 33 (2021), 497-509. (2021) Zbl1510.34021MR4393381DOI10.1216/jie.2021.33.497
- Morales, M. G., Došlá, Z., Mendoza, F. J., 10.3934/era.2020030, Electron Res. Arch. 28 (2020), 567-587. (2020) Zbl07220320MR4097636DOI10.3934/era.2020030
- Morita, T., Sato, K., 10.4036/iis.2006.71, Interdiscip. Inf. Sci. 12 (2006), 71-83. (2006) Zbl1121.34003MR2267319DOI10.4036/iis.2006.71
- Muldowney, P., 10.1515/JAA.2000.1, J. Appl. Anal. 6 (2000), 1-24. (2000) Zbl0963.28012MR1758185DOI10.1515/JAA.2000.1
- Pskhu, A. V., 10.1070/SM2011v202n04ABEH004156, Sb. Math. 202 (2011), 571-582. (2011) Zbl1226.34005MR2830238DOI10.1070/SM2011v202n04ABEH004156
- Sabatier, J., Agrawal, O. P., (eds.), J. A. T. Machado, 10.1007/978-1-4020-6042-7, Springer, Dordrecht (2007). (2007) Zbl1116.00014MR2432163DOI10.1007/978-1-4020-6042-7
- Salem, A. H. H., Cichoń, M., 10.1155/2013/428094, J. Funct. Spaces Appl. 2013 (2013), Article ID 428094, 13 pages. (2013) Zbl1272.34010MR3071357DOI10.1155/2013/428094
- Samko, S. G., Kilbas, A. A., Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York (1993). (1993) Zbl0818.26003MR1347689
- Schmaedeke, W. W., 10.1137/0303019, J. SIAM Control, Ser. A 3 (1965), 231-280. (1965) Zbl0161.29203MR0189870DOI10.1137/0303019
- Schwabik, Š., 10.1142/1875, Series in Real Analysis 5. World Scientific, Singapore (1992). (1992) Zbl0781.34003MR1200241DOI10.1142/1875
- Smart, D. R., Fixed Point Theorems, Cambridge Tracts in Mathematics 66. Cambridge University Press, Cambridge (1980). (1980) Zbl0427.47036MR0467717
- Talvila, E., 10.14321/realanalexch.33.1.0051, Real Anal. Exch. 33 (2007/08), 51-82. (2007) Zbl1154.26011MR2402863DOI10.14321/realanalexch.33.1.0051
- Talvila, E., 10.1155/2009/307404, Abstr. Appl. Anal. 2009 (2009), Article ID 307404, 18 pages. (2009) Zbl1192.46039MR2559282DOI10.1155/2009/307404
- Xu, Y. T., Functional Differential Equations and Measure Differential Equations, Zhongshan University Press, Guangzhou (1988), Chinese. (1988)
- Ye, G., Liu, W., 10.1007/s00605-015-0853-1, Monatsh. Math. 181 (2016), 975-989. (2016) Zbl1362.45009MR3563309DOI10.1007/s00605-015-0853-1
- Ye, G., Liu, W., 10.4208/jms.v49n4.16.06, J. Math. Study 49 (2016), 433-448. (2016) Zbl1374.26021MR3592995DOI10.4208/jms.v49n4.16.06
- Ye, G., Zhang, M., Liu, E., Zhao, D., 10.33044/revuma.v60n2a11, Rev. Unión Mat. Argent. 60 (2019), 443-458. (2019) Zbl1432.34005MR4049796DOI10.33044/revuma.v60n2a11
- Zhou, H., Ye, G., Liu, W., Wang, O., The distributional Henstock-Kurzweil integral and measure differential equations, Bull. Iran. Math. Soc. 41 (2015), 363-374. (2015) Zbl1373.26008MR3345524
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.