Cauchy problem with Denjoy-Stieltjes integral

María Guadalupe Morales Macías

Mathematica Bohemica (2024)

  • Volume: 149, Issue: 4, page 471-490
  • ISSN: 0862-7959

Abstract

top
This work is devoted to analyzing the existence of the Cauchy fractional-type problems considering the Riemann-Liouville derivative (in the distributional Denjoy integral sense) of real order n 1 . These kinds of equations are a generalization of the measure differential equations. Our results extend A. A. Kilbas, H. M. Srivastava, J. J. Trujillo (2006) and H. Zhou, G. Ye, W. Liu, O. Wang (2015).

How to cite

top

Morales Macías, María Guadalupe. "Cauchy problem with Denjoy-Stieltjes integral." Mathematica Bohemica 149.4 (2024): 471-490. <http://eudml.org/doc/299610>.

@article{MoralesMacías2024,
abstract = {This work is devoted to analyzing the existence of the Cauchy fractional-type problems considering the Riemann-Liouville derivative (in the distributional Denjoy integral sense) of real order $n\ge 1$. These kinds of equations are a generalization of the measure differential equations. Our results extend A. A. Kilbas, H. M. Srivastava, J. J. Trujillo (2006) and H. Zhou, G. Ye, W. Liu, O. Wang (2015).},
author = {Morales Macías, María Guadalupe},
journal = {Mathematica Bohemica},
keywords = {fractional measure differential equation; Cauchy problem; Riemann-Liouville fractional integral and derivative; distributional Denjoy integral},
language = {eng},
number = {4},
pages = {471-490},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Cauchy problem with Denjoy-Stieltjes integral},
url = {http://eudml.org/doc/299610},
volume = {149},
year = {2024},
}

TY - JOUR
AU - Morales Macías, María Guadalupe
TI - Cauchy problem with Denjoy-Stieltjes integral
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 4
SP - 471
EP - 490
AB - This work is devoted to analyzing the existence of the Cauchy fractional-type problems considering the Riemann-Liouville derivative (in the distributional Denjoy integral sense) of real order $n\ge 1$. These kinds of equations are a generalization of the measure differential equations. Our results extend A. A. Kilbas, H. M. Srivastava, J. J. Trujillo (2006) and H. Zhou, G. Ye, W. Liu, O. Wang (2015).
LA - eng
KW - fractional measure differential equation; Cauchy problem; Riemann-Liouville fractional integral and derivative; distributional Denjoy integral
UR - http://eudml.org/doc/299610
ER -

References

top
  1. Ang, D. D., Schmitt, K., Vy, L. K., 10.36045/bbms/1105733252, Bull. Belg. Math. Soc. - Simon Stevin 4 (1997), 355-371. (1997) Zbl0929.26009MR1457075DOI10.36045/bbms/1105733252
  2. Atangana, A., 10.1016/j.physa.2018.03.056, Physica A 505 (2018), 688-706. (2018) Zbl07550314MR3807252DOI10.1016/j.physa.2018.03.056
  3. Atangana, A., Gómez-Aguilar, J. F., 10.1140/epjp/i2018-12021-3, Eur. Phys. J. Plus 133 (2018), Article ID 133, 22 pages. (2018) DOI10.1140/epjp/i2018-12021-3
  4. Atangana, A., Gómez-Aguilar, J. F., 10.1002/num.22195, Numer. Methods Partial Differ. Equations 34 (2018), 1502-1523. (2018) Zbl1417.65113MR3843531DOI10.1002/num.22195
  5. Atangana, A., Qureshi, S., 10.1016/j.chaos.2019.04.020, Chaos Solitons Fractals 123 (2019), 320-337. (2019) Zbl1448.65268MR3941450DOI10.1016/j.chaos.2019.04.020
  6. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J. J., 10.1142/10044, Series on Complexity, Nonlinearity and Chaos 3. World Scientific, Hackensack (2012). (2012) Zbl1248.26011MR2894576DOI10.1142/10044
  7. Barrett, J. H., 10.4153/CJM-1954-058-2, Can. J. Math. 6 (1954), 529-541. (1954) Zbl0058.10702MR0064936DOI10.4153/CJM-1954-058-2
  8. Bongiorno, B., Relatively weakly compact sets in the Denjoy space, J. Math. Study 27 (1994), 37-44. (1994) Zbl1045.26502MR1318256
  9. Bongiorno, B., Panchapagesan, T. V., 10.2307/44152670, Real Anal. Exch. 21 (1995/96), 604-614. (1995) Zbl0879.26028MR1407272DOI10.2307/44152670
  10. Bonotto, E. M., Federson, M., Muldowney, P., 10.14321/realanalexch.36.1.0107, Real Anal. Exch. 36 (2010/11), 107-148. (2010) Zbl1246.28008MR3016407DOI10.14321/realanalexch.36.1.0107
  11. Carothers, N. L., 10.1017/CBO9780511814228, Cambridge University Press, Cambridge (2000). (2000) Zbl0997.26003MR1772332DOI10.1017/CBO9780511814228
  12. Chew, T. S., Flordeliza, F., 10.57262/die/1371225020, Differ. Integral Equ. 4 (1991), 861-868. (1991) Zbl0733.34004MR1108065DOI10.57262/die/1371225020
  13. Das, P. C., Sharma, R. R., 10.1137/0309005, SIAM. J. Control 9 (1971), 43-61. (1971) Zbl0283.49003MR0274898DOI10.1137/0309005
  14. Das, P. C., Sharma, R. R., 10.21136/CMJ.1972.101082, Czech. Math. J. 22 (1972), 145-158. (1972) Zbl0241.34070MR0304815DOI10.21136/CMJ.1972.101082
  15. Diethelm, K., 10.1007/978-3-642-14574-2, Lecture Notes in Mathematics 2004. Springer, Berlin (2010). (2010) Zbl1215.34001MR2680847DOI10.1007/978-3-642-14574-2
  16. Diethelm, K., Freed, A. D., 10.1007/978-3-642-60185-9_24, Scientific Computing in Chemical Engineering II Springer, Berlin (1999). (1999) DOI10.1007/978-3-642-60185-9_24
  17. Duistermaat, J. J., Kolk, J. A. C., 10.1007/978-0-8176-4675-2, Cornerstones. Birkhäuser, Boston (2010). (2010) Zbl1213.46001MR2680692DOI10.1007/978-0-8176-4675-2
  18. Gómez-Aguilar, J. F., Atangana, A., 10.1140/epjp/i2017-11293-3, Eur. Phys. J. Plus 132 (2017), Article ID 13, 21 pages. (2017) DOI10.1140/epjp/i2017-11293-3
  19. Gordon, R. A., 10.1090/gsm/004, Graduate Studies in Mathematics 4. AMS, Providence (1994). (1994) Zbl0807.26004MR1288751DOI10.1090/gsm/004
  20. Hayek, N., Trujillo, J., Rivero, M., Bonilla, B., Moreno, J. C., 10.1080/00036819808840696, Appl. Anal. 70 (1999), 347-361. (1999) Zbl1030.34003MR1688864DOI10.1080/00036819808840696
  21. (ed.), R. Hilfer, 10.1142/3779, World Scientific, Singapore (2000). (2000) Zbl0998.26002MR1890104DOI10.1142/3779
  22. Hörmander, L., 10.1007/978-3-642-96750-4, Grundlehren der Mathematischen Wissenschaften 256. Springer, Berlin (1990). (1990) Zbl0712.35001MR1996773DOI10.1007/978-3-642-96750-4
  23. Kilbas, A. A., Bonilla, B., Trujillo, J. J., 10.1515/dema-2000-0315, Demonstr. Math. 33 (2000), 583-602. (2000) Zbl0964.34004MR1791723DOI10.1515/dema-2000-0315
  24. Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., 10.1016/s0304-0208(06)x8001-5, North-Holland Mathematics Studies 204. Elsevier, Amsterdam (2006). (2006) Zbl1092.45003MR2218073DOI10.1016/s0304-0208(06)x8001-5
  25. Krejčí, P., Lamba, H., Monteiro, G. A., Rachinskii, D., 10.21136/MB.2016.18, Math. Bohem. 141 (2016), 261-286. (2016) Zbl1389.34140MR3499787DOI10.21136/MB.2016.18
  26. Mainardi, F., 10.1007/978-3-7091-2664-6_7, Fractals and Fractional Calculus in Continuum Mechanics CISM Courses and Lectures 378. Springer, Vienna (1997), 291-348. (1997) MR1611587DOI10.1007/978-3-7091-2664-6_7
  27. Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York (1993). (1993) Zbl0789.26002MR1219954
  28. Monteiro, G. A., Satco, B., 10.14232/ejqtde.2017.1.7, Electron. J. Qual. Theory Differ. Equ. 2017 (2017), Article ID 7, 26 pages. (2017) Zbl1413.34062MR3606985DOI10.14232/ejqtde.2017.1.7
  29. Monteiro, G. A., Slavík, A., Tvrdý, M., 10.1142/9432, Series in Real Analysis 15. World Scientific, Singapore (2019). (2019) Zbl1437.28001MR3839599DOI10.1142/9432
  30. Morales, M. G., Došlá, Z., 10.1216/jie.2021.33.497, J. Integral Equations Appl. 33 (2021), 497-509. (2021) Zbl1510.34021MR4393381DOI10.1216/jie.2021.33.497
  31. Morales, M. G., Došlá, Z., Mendoza, F. J., 10.3934/era.2020030, Electron Res. Arch. 28 (2020), 567-587. (2020) Zbl07220320MR4097636DOI10.3934/era.2020030
  32. Morita, T., Sato, K., 10.4036/iis.2006.71, Interdiscip. Inf. Sci. 12 (2006), 71-83. (2006) Zbl1121.34003MR2267319DOI10.4036/iis.2006.71
  33. Muldowney, P., 10.1515/JAA.2000.1, J. Appl. Anal. 6 (2000), 1-24. (2000) Zbl0963.28012MR1758185DOI10.1515/JAA.2000.1
  34. Pskhu, A. V., 10.1070/SM2011v202n04ABEH004156, Sb. Math. 202 (2011), 571-582. (2011) Zbl1226.34005MR2830238DOI10.1070/SM2011v202n04ABEH004156
  35. Sabatier, J., Agrawal, O. P., (eds.), J. A. T. Machado, 10.1007/978-1-4020-6042-7, Springer, Dordrecht (2007). (2007) Zbl1116.00014MR2432163DOI10.1007/978-1-4020-6042-7
  36. Salem, A. H. H., Cichoń, M., 10.1155/2013/428094, J. Funct. Spaces Appl. 2013 (2013), Article ID 428094, 13 pages. (2013) Zbl1272.34010MR3071357DOI10.1155/2013/428094
  37. Samko, S. G., Kilbas, A. A., Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York (1993). (1993) Zbl0818.26003MR1347689
  38. Schmaedeke, W. W., 10.1137/0303019, J. SIAM Control, Ser. A 3 (1965), 231-280. (1965) Zbl0161.29203MR0189870DOI10.1137/0303019
  39. Schwabik, Š., 10.1142/1875, Series in Real Analysis 5. World Scientific, Singapore (1992). (1992) Zbl0781.34003MR1200241DOI10.1142/1875
  40. Smart, D. R., Fixed Point Theorems, Cambridge Tracts in Mathematics 66. Cambridge University Press, Cambridge (1980). (1980) Zbl0427.47036MR0467717
  41. Talvila, E., 10.14321/realanalexch.33.1.0051, Real Anal. Exch. 33 (2007/08), 51-82. (2007) Zbl1154.26011MR2402863DOI10.14321/realanalexch.33.1.0051
  42. Talvila, E., 10.1155/2009/307404, Abstr. Appl. Anal. 2009 (2009), Article ID 307404, 18 pages. (2009) Zbl1192.46039MR2559282DOI10.1155/2009/307404
  43. Xu, Y. T., Functional Differential Equations and Measure Differential Equations, Zhongshan University Press, Guangzhou (1988), Chinese. (1988) 
  44. Ye, G., Liu, W., 10.1007/s00605-015-0853-1, Monatsh. Math. 181 (2016), 975-989. (2016) Zbl1362.45009MR3563309DOI10.1007/s00605-015-0853-1
  45. Ye, G., Liu, W., 10.4208/jms.v49n4.16.06, J. Math. Study 49 (2016), 433-448. (2016) Zbl1374.26021MR3592995DOI10.4208/jms.v49n4.16.06
  46. Ye, G., Zhang, M., Liu, E., Zhao, D., 10.33044/revuma.v60n2a11, Rev. Unión Mat. Argent. 60 (2019), 443-458. (2019) Zbl1432.34005MR4049796DOI10.33044/revuma.v60n2a11
  47. Zhou, H., Ye, G., Liu, W., Wang, O., The distributional Henstock-Kurzweil integral and measure differential equations, Bull. Iran. Math. Soc. 41 (2015), 363-374. (2015) Zbl1373.26008MR3345524

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.