The holomorphic automorphism groups of twisted Fock-Bargmann-Hartogs domains
Czechoslovak Mathematical Journal (2018)
- Volume: 68, Issue: 3, page 611-631
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKim, Hyeseon, and Yamamori, Atsushi. "The holomorphic automorphism groups of twisted Fock-Bargmann-Hartogs domains." Czechoslovak Mathematical Journal 68.3 (2018): 611-631. <http://eudml.org/doc/294580>.
@article{Kim2018,
abstract = {We consider a certain class of unbounded nonhyperbolic Reinhardt domains which is called the twisted Fock-Bargmann-Hartogs domains. By showing Cartan's linearity theorem for our unbounded nonhyperbolic domains, we give a complete description of the automorphism groups of twisted Fock-Bargmann-Hartogs domains.},
author = {Kim, Hyeseon, Yamamori, Atsushi},
journal = {Czechoslovak Mathematical Journal},
keywords = {holomorphic automorphism group; Bergman kernel; Reinhardt domain},
language = {eng},
number = {3},
pages = {611-631},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The holomorphic automorphism groups of twisted Fock-Bargmann-Hartogs domains},
url = {http://eudml.org/doc/294580},
volume = {68},
year = {2018},
}
TY - JOUR
AU - Kim, Hyeseon
AU - Yamamori, Atsushi
TI - The holomorphic automorphism groups of twisted Fock-Bargmann-Hartogs domains
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 3
SP - 611
EP - 631
AB - We consider a certain class of unbounded nonhyperbolic Reinhardt domains which is called the twisted Fock-Bargmann-Hartogs domains. By showing Cartan's linearity theorem for our unbounded nonhyperbolic domains, we give a complete description of the automorphism groups of twisted Fock-Bargmann-Hartogs domains.
LA - eng
KW - holomorphic automorphism group; Bergman kernel; Reinhardt domain
UR - http://eudml.org/doc/294580
ER -
References
top- Ahn, H., Byun, J., Park, J.-D., 10.1142/S0129167X1250098X, Int. J. Math. 23 (2012), 1250098, 11 pages. (2012) Zbl1248.32001MR2959444DOI10.1142/S0129167X1250098X
- Bi, E., Feng, Z., Tu, Z., 10.1007/s10455-016-9495-3, Ann. Global Anal. Geom. 49 (2016), 349-359. (2016) Zbl1355.32004MR3510521DOI10.1007/s10455-016-9495-3
- D'Angelo, J. P., 10.1007/BF02921591, J. Geom. Anal. 4 (1994), 23-34. (1994) Zbl0794.32021MR1274136DOI10.1007/BF02921591
- Engliš, M., Zhang, G., 10.1080/17476930500515017, Complex Var. Elliptic Equ. 51 (2006), 277-294. (2006) Zbl1202.32017MR2200983DOI10.1080/17476930500515017
- Huo, Z., 10.1007/s12220-016-9681-3, J. Geom. Anal. 27 (2017), 271-299. (2017) Zbl1367.32004MR3606552DOI10.1007/s12220-016-9681-3
- Ishi, H., Kai, C., 10.2206/kyushujm.64.35, Kyushu J. Math. 64 (2010), 35-47. (2010) Zbl1195.32009MR2662658DOI10.2206/kyushujm.64.35
- Jarnicki, M., Pflug, P., 10.4171/049, EMS Textbooks in Mathematics, European Mathematical Society, Zürich (2008). (2008) Zbl1148.32001MR2396710DOI10.4171/049
- Jarnicki, M., Pflug, P., 10.1515/9783110253863, De Gruyter Expositions in Mathematics 9, Walter de Gruyter, Berlin (2013). (2013) Zbl1273.32002MR3114789DOI10.1515/9783110253863
- Kim, H., Ninh, V. T., Yamamori, A., 10.1016/j.jmaa.2013.07.007, J. Math. Anal. Appl. 409 (2014), 637-642. (2014) Zbl1307.32017MR3103183DOI10.1016/j.jmaa.2013.07.007
- Kim, H., Yamamori, A., 10.1016/j.bulsci.2014.11.007, Bull. Sci. Math. 139 (2015), 737-749. (2015) Zbl1351.32032MR3407513DOI10.1016/j.bulsci.2014.11.007
- Kim, H., Yamamori, A., Zhang, L., 10.1007/s10455-016-9511-7, Ann. Global Anal. Geom. 50 (2016), 261-295. (2016) Zbl1360.32008MR3554375DOI10.1007/s10455-016-9511-7
- Kodama, A., 10.1080/17476933.2013.845177, Complex Var. Elliptic Equ. 59 (2014), 1342-1349. (2014) Zbl1300.32001MR3210305DOI10.1080/17476933.2013.845177
- Ligocka, E., 10.4064/sm-94-3-257-272, Stud. Math. 94 (1989), 257-272. (1989) Zbl0688.32020MR1019793DOI10.4064/sm-94-3-257-272
- Loi, A., Zedda, M., 10.1007/s00209-011-0842-6, Math. Z. 270 (2012), 1077-1087. (2012) Zbl1239.53093MR2892939DOI10.1007/s00209-011-0842-6
- Lu, Q., 10.1007/978-1-4612-5296-2_22, Several Complex Variables Proc. 1981 Hangzhou Conf., Birkhäuser, Boston (1984), 199-211. (1984) Zbl0564.32014MR0897597DOI10.1007/978-1-4612-5296-2_22
- Ning, J., Zhang, H., Zhou, X., 10.1090/tran/6690, Trans. Am. Math. Soc. 369 (2017), 517-536. (2017) Zbl1351.32003MR3557783DOI10.1090/tran/6690
- Rong, F., 10.1017/S0305004114000048, Math. Proc. Camb. Philos. Soc. 156 (2014), 461-472. (2014) Zbl1290.32020MR3181635DOI10.1017/S0305004114000048
- Rong, F., 10.1016/j.bulsci.2015.02.001, Bull. Sci. Math. 140 (2016), 92-98. (2016) Zbl1338.32020MR3446951DOI10.1016/j.bulsci.2015.02.001
- Roos, G., 10.1007/BF02884708, Sci. China Ser. A 48 (2005), Suppl., 225-237. (2005) Zbl1125.32001MR2156503DOI10.1007/BF02884708
- Springer, G., 10.1215/S0012-7094-51-01832-7, Duke Math. J. 18 (1951), 411-424. (1951) Zbl0043.30401MR0041233DOI10.1215/S0012-7094-51-01832-7
- Tsuboi, T., 10.4099/jjm1924.29.0_141, Jap. J. Math. 29 (1959), 141-148. (1959) Zbl0097.06703MR0121504DOI10.4099/jjm1924.29.0_141
- Tu, Z., Wang, L., 10.1016/j.jmaa.2014.04.073, J. Math. Anal. Appl. 419 (2014), 703-714. (2014) Zbl1293.32002MR3225398DOI10.1016/j.jmaa.2014.04.073
- Tu, Z., Wang, L., 10.1007/s00208-014-1136-1, Math. Ann. 363 (2015), 1-34. (2015) Zbl1330.32007MR3394371DOI10.1007/s00208-014-1136-1
- Yamamori, A., 10.1016/j.crma.2012.01.005, C. R., Math. Acad. Sci. Paris 350 (2012), 157-160. (2012) Zbl1239.32002MR2891103DOI10.1016/j.crma.2012.01.005
- Yamamori, A., 10.1080/17476933.2011.620098, Complex Var. Elliptic Equ. 58 (2013), 783-793. (2013) Zbl1272.32002MR3170660DOI10.1080/17476933.2011.620098
- Yamamori, A., 10.1016/j.bulsci.2013.10.002, Bull. Sci. Math. 138 (2014), 406-415. (2014) Zbl1288.32003MR3206476DOI10.1016/j.bulsci.2013.10.002
- Yamamori, A., 10.1090/S0002-9939-2014-12317-3, Proc. Am. Math. Soc. 143 (2015), 1569-1581. (2015) Zbl1321.32004MR3314070DOI10.1090/S0002-9939-2014-12317-3
- Yamamori, A., 10.2748/tmj/1498269625, Tohoku Math. J. 69 (2017), 239-260. (2017) Zbl06775254MR3682165DOI10.2748/tmj/1498269625
- Yin, W., 10.1007/BF02887114, Chin. Sci. Bull. 44 (1999), 1947-1951. (1999) Zbl1039.32502MR1752411DOI10.1007/BF02887114
- Zedda, M., 10.1016/j.geomphys.2015.11.002, J. Geom. Phys. 100 (2016), 62-67. (2016) Zbl1330.53104MR3435762DOI10.1016/j.geomphys.2015.11.002
- Zhang, L., 10.1007/BF02884724, Sci. China Ser. A 48 (2005), Suppl., 400-412. (2005) Zbl1128.32002MR2156520DOI10.1007/BF02884724
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.