The holomorphic automorphism groups of twisted Fock-Bargmann-Hartogs domains

Hyeseon Kim; Atsushi Yamamori

Czechoslovak Mathematical Journal (2018)

  • Volume: 68, Issue: 3, page 611-631
  • ISSN: 0011-4642

Abstract

top
We consider a certain class of unbounded nonhyperbolic Reinhardt domains which is called the twisted Fock-Bargmann-Hartogs domains. By showing Cartan's linearity theorem for our unbounded nonhyperbolic domains, we give a complete description of the automorphism groups of twisted Fock-Bargmann-Hartogs domains.

How to cite

top

Kim, Hyeseon, and Yamamori, Atsushi. "The holomorphic automorphism groups of twisted Fock-Bargmann-Hartogs domains." Czechoslovak Mathematical Journal 68.3 (2018): 611-631. <http://eudml.org/doc/294580>.

@article{Kim2018,
abstract = {We consider a certain class of unbounded nonhyperbolic Reinhardt domains which is called the twisted Fock-Bargmann-Hartogs domains. By showing Cartan's linearity theorem for our unbounded nonhyperbolic domains, we give a complete description of the automorphism groups of twisted Fock-Bargmann-Hartogs domains.},
author = {Kim, Hyeseon, Yamamori, Atsushi},
journal = {Czechoslovak Mathematical Journal},
keywords = {holomorphic automorphism group; Bergman kernel; Reinhardt domain},
language = {eng},
number = {3},
pages = {611-631},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The holomorphic automorphism groups of twisted Fock-Bargmann-Hartogs domains},
url = {http://eudml.org/doc/294580},
volume = {68},
year = {2018},
}

TY - JOUR
AU - Kim, Hyeseon
AU - Yamamori, Atsushi
TI - The holomorphic automorphism groups of twisted Fock-Bargmann-Hartogs domains
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 3
SP - 611
EP - 631
AB - We consider a certain class of unbounded nonhyperbolic Reinhardt domains which is called the twisted Fock-Bargmann-Hartogs domains. By showing Cartan's linearity theorem for our unbounded nonhyperbolic domains, we give a complete description of the automorphism groups of twisted Fock-Bargmann-Hartogs domains.
LA - eng
KW - holomorphic automorphism group; Bergman kernel; Reinhardt domain
UR - http://eudml.org/doc/294580
ER -

References

top
  1. Ahn, H., Byun, J., Park, J.-D., 10.1142/S0129167X1250098X, Int. J. Math. 23 (2012), 1250098, 11 pages. (2012) Zbl1248.32001MR2959444DOI10.1142/S0129167X1250098X
  2. Bi, E., Feng, Z., Tu, Z., 10.1007/s10455-016-9495-3, Ann. Global Anal. Geom. 49 (2016), 349-359. (2016) Zbl1355.32004MR3510521DOI10.1007/s10455-016-9495-3
  3. D'Angelo, J. P., 10.1007/BF02921591, J. Geom. Anal. 4 (1994), 23-34. (1994) Zbl0794.32021MR1274136DOI10.1007/BF02921591
  4. Engliš, M., Zhang, G., 10.1080/17476930500515017, Complex Var. Elliptic Equ. 51 (2006), 277-294. (2006) Zbl1202.32017MR2200983DOI10.1080/17476930500515017
  5. Huo, Z., 10.1007/s12220-016-9681-3, J. Geom. Anal. 27 (2017), 271-299. (2017) Zbl1367.32004MR3606552DOI10.1007/s12220-016-9681-3
  6. Ishi, H., Kai, C., 10.2206/kyushujm.64.35, Kyushu J. Math. 64 (2010), 35-47. (2010) Zbl1195.32009MR2662658DOI10.2206/kyushujm.64.35
  7. Jarnicki, M., Pflug, P., 10.4171/049, EMS Textbooks in Mathematics, European Mathematical Society, Zürich (2008). (2008) Zbl1148.32001MR2396710DOI10.4171/049
  8. Jarnicki, M., Pflug, P., 10.1515/9783110253863, De Gruyter Expositions in Mathematics 9, Walter de Gruyter, Berlin (2013). (2013) Zbl1273.32002MR3114789DOI10.1515/9783110253863
  9. Kim, H., Ninh, V. T., Yamamori, A., 10.1016/j.jmaa.2013.07.007, J. Math. Anal. Appl. 409 (2014), 637-642. (2014) Zbl1307.32017MR3103183DOI10.1016/j.jmaa.2013.07.007
  10. Kim, H., Yamamori, A., 10.1016/j.bulsci.2014.11.007, Bull. Sci. Math. 139 (2015), 737-749. (2015) Zbl1351.32032MR3407513DOI10.1016/j.bulsci.2014.11.007
  11. Kim, H., Yamamori, A., Zhang, L., 10.1007/s10455-016-9511-7, Ann. Global Anal. Geom. 50 (2016), 261-295. (2016) Zbl1360.32008MR3554375DOI10.1007/s10455-016-9511-7
  12. Kodama, A., 10.1080/17476933.2013.845177, Complex Var. Elliptic Equ. 59 (2014), 1342-1349. (2014) Zbl1300.32001MR3210305DOI10.1080/17476933.2013.845177
  13. Ligocka, E., 10.4064/sm-94-3-257-272, Stud. Math. 94 (1989), 257-272. (1989) Zbl0688.32020MR1019793DOI10.4064/sm-94-3-257-272
  14. Loi, A., Zedda, M., 10.1007/s00209-011-0842-6, Math. Z. 270 (2012), 1077-1087. (2012) Zbl1239.53093MR2892939DOI10.1007/s00209-011-0842-6
  15. Lu, Q., 10.1007/978-1-4612-5296-2_22, Several Complex Variables Proc. 1981 Hangzhou Conf., Birkhäuser, Boston (1984), 199-211. (1984) Zbl0564.32014MR0897597DOI10.1007/978-1-4612-5296-2_22
  16. Ning, J., Zhang, H., Zhou, X., 10.1090/tran/6690, Trans. Am. Math. Soc. 369 (2017), 517-536. (2017) Zbl1351.32003MR3557783DOI10.1090/tran/6690
  17. Rong, F., 10.1017/S0305004114000048, Math. Proc. Camb. Philos. Soc. 156 (2014), 461-472. (2014) Zbl1290.32020MR3181635DOI10.1017/S0305004114000048
  18. Rong, F., 10.1016/j.bulsci.2015.02.001, Bull. Sci. Math. 140 (2016), 92-98. (2016) Zbl1338.32020MR3446951DOI10.1016/j.bulsci.2015.02.001
  19. Roos, G., 10.1007/BF02884708, Sci. China Ser. A 48 (2005), Suppl., 225-237. (2005) Zbl1125.32001MR2156503DOI10.1007/BF02884708
  20. Springer, G., 10.1215/S0012-7094-51-01832-7, Duke Math. J. 18 (1951), 411-424. (1951) Zbl0043.30401MR0041233DOI10.1215/S0012-7094-51-01832-7
  21. Tsuboi, T., 10.4099/jjm1924.29.0_141, Jap. J. Math. 29 (1959), 141-148. (1959) Zbl0097.06703MR0121504DOI10.4099/jjm1924.29.0_141
  22. Tu, Z., Wang, L., 10.1016/j.jmaa.2014.04.073, J. Math. Anal. Appl. 419 (2014), 703-714. (2014) Zbl1293.32002MR3225398DOI10.1016/j.jmaa.2014.04.073
  23. Tu, Z., Wang, L., 10.1007/s00208-014-1136-1, Math. Ann. 363 (2015), 1-34. (2015) Zbl1330.32007MR3394371DOI10.1007/s00208-014-1136-1
  24. Yamamori, A., 10.1016/j.crma.2012.01.005, C. R., Math. Acad. Sci. Paris 350 (2012), 157-160. (2012) Zbl1239.32002MR2891103DOI10.1016/j.crma.2012.01.005
  25. Yamamori, A., 10.1080/17476933.2011.620098, Complex Var. Elliptic Equ. 58 (2013), 783-793. (2013) Zbl1272.32002MR3170660DOI10.1080/17476933.2011.620098
  26. Yamamori, A., 10.1016/j.bulsci.2013.10.002, Bull. Sci. Math. 138 (2014), 406-415. (2014) Zbl1288.32003MR3206476DOI10.1016/j.bulsci.2013.10.002
  27. Yamamori, A., 10.1090/S0002-9939-2014-12317-3, Proc. Am. Math. Soc. 143 (2015), 1569-1581. (2015) Zbl1321.32004MR3314070DOI10.1090/S0002-9939-2014-12317-3
  28. Yamamori, A., 10.2748/tmj/1498269625, Tohoku Math. J. 69 (2017), 239-260. (2017) Zbl06775254MR3682165DOI10.2748/tmj/1498269625
  29. Yin, W., 10.1007/BF02887114, Chin. Sci. Bull. 44 (1999), 1947-1951. (1999) Zbl1039.32502MR1752411DOI10.1007/BF02887114
  30. Zedda, M., 10.1016/j.geomphys.2015.11.002, J. Geom. Phys. 100 (2016), 62-67. (2016) Zbl1330.53104MR3435762DOI10.1016/j.geomphys.2015.11.002
  31. Zhang, L., 10.1007/BF02884724, Sci. China Ser. A 48 (2005), Suppl., 400-412. (2005) Zbl1128.32002MR2156520DOI10.1007/BF02884724

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.