Reducing the lengths of slim planar semimodular lattices without changing their congruence lattices
Mathematica Bohemica (2024)
- Volume: 149, Issue: 4, page 503-532
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topCzédli, Gábor. "Reducing the lengths of slim planar semimodular lattices without changing their congruence lattices." Mathematica Bohemica 149.4 (2024): 503-532. <http://eudml.org/doc/299645>.
@article{Czédli2024,
abstract = {Following G. Grätzer and E. Knapp (2007), a slim planar semimodular lattice, SPS lattice for short, is a finite planar semimodular lattice having no $M_3$ as a sublattice. An SPS lattice is a slim rectangular lattice if it has exactly two doubly irreducible elements and these two elements are complements of each other. A finite poset $P$ is said to be JConSPS-representable if there is an SPS lattice $L$ such that $P$ is isomorphic to the poset $\{\rm J\}(\{\rm Con\} L)$ of join-irreducible congruences of $L$. We prove that if $1<n\in \mathbb \{N\}$ and $P$ is an $n$-element JConSPS-representable poset, then there exists a slim rectangular lattice $L$ such that $\{\rm J\}(\{\rm Con\} L)\cong P$, the length of $L$ is at most $2n^2$, and $|L|\le 4n^4$. This offers an algorithm to decide whether a finite poset $P$ is JConSPS-representable (or a finite distributive lattice is “ConSPS-representable”). This algorithm is slow as G. Czédli, T. Dékány, G. Gyenizse, and J. Kulin proved in 2016 that there are asymptotically $\frac\{1\}\{2\}(k-2)! \{\rm e\}^2$ slim rectangular lattices of a given length $k$, where $\{\rm e\}$ is the famous constant $\approx 2.71828$. The known properties and constructions of JConSPS-representable posets can accelerate the algorithm; we present a new construction.},
author = {Czédli, Gábor},
journal = {Mathematica Bohemica},
keywords = {slim rectangular lattice; slim semimodular lattice; planar semimodular lattice; congruence lattice; lattice congruence; lamp; $\mathcal \{C\}_1$-diagram},
language = {eng},
number = {4},
pages = {503-532},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Reducing the lengths of slim planar semimodular lattices without changing their congruence lattices},
url = {http://eudml.org/doc/299645},
volume = {149},
year = {2024},
}
TY - JOUR
AU - Czédli, Gábor
TI - Reducing the lengths of slim planar semimodular lattices without changing their congruence lattices
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 4
SP - 503
EP - 532
AB - Following G. Grätzer and E. Knapp (2007), a slim planar semimodular lattice, SPS lattice for short, is a finite planar semimodular lattice having no $M_3$ as a sublattice. An SPS lattice is a slim rectangular lattice if it has exactly two doubly irreducible elements and these two elements are complements of each other. A finite poset $P$ is said to be JConSPS-representable if there is an SPS lattice $L$ such that $P$ is isomorphic to the poset ${\rm J}({\rm Con} L)$ of join-irreducible congruences of $L$. We prove that if $1<n\in \mathbb {N}$ and $P$ is an $n$-element JConSPS-representable poset, then there exists a slim rectangular lattice $L$ such that ${\rm J}({\rm Con} L)\cong P$, the length of $L$ is at most $2n^2$, and $|L|\le 4n^4$. This offers an algorithm to decide whether a finite poset $P$ is JConSPS-representable (or a finite distributive lattice is “ConSPS-representable”). This algorithm is slow as G. Czédli, T. Dékány, G. Gyenizse, and J. Kulin proved in 2016 that there are asymptotically $\frac{1}{2}(k-2)! {\rm e}^2$ slim rectangular lattices of a given length $k$, where ${\rm e}$ is the famous constant $\approx 2.71828$. The known properties and constructions of JConSPS-representable posets can accelerate the algorithm; we present a new construction.
LA - eng
KW - slim rectangular lattice; slim semimodular lattice; planar semimodular lattice; congruence lattice; lattice congruence; lamp; $\mathcal {C}_1$-diagram
UR - http://eudml.org/doc/299645
ER -
References
top- Adaricheva, K., Czédli, G., 10.1007/s00012-014-0295-y, Algebra Univers. 72 (2014), 155-162. (2014) Zbl1301.06024MR3257652DOI10.1007/s00012-014-0295-y
- Ahmed, D., Horváth, E. K., 10.7151/dmgaa.1309, Discuss. Math., Gen. Algebra Appl. 39 (2019), 251-261. (2019) Zbl1463.06014MR4020360DOI10.7151/dmgaa.1309
- Czédli, G., 10.1007/s00012-012-0190-3, Algebra Univers. 67 (2012), 313-345. (2012) Zbl1269.06004MR2970728DOI10.1007/s00012-012-0190-3
- Czédli, G., 10.1007/s00012-014-0282-3, Algebra Univers. 71 (2014), 385-404. (2014) Zbl1302.06011MR3207613DOI10.1007/s00012-014-0282-3
- Czédli, G., 10.1007/s00012-014-0294-z, Algebra Univers. 72 (2014), 125-154. (2014) Zbl1312.06005MR3257651DOI10.1007/s00012-014-0294-z
- Czédli, G., 10.1007/s00012-017-0437-0, Algebra Univers. 77 (2017), 443-498. (2017) Zbl1380.06006MR3662480DOI10.1007/s00012-017-0437-0
- Czédli, G., 10.14232/actasm-021-865-y, Acta Sci. Math. 87 (2021), 381-413. (2021) Zbl1499.06025MR4333915DOI10.14232/actasm-021-865-y
- Czédli, G., 10.1007/s44146-022-00040-z, Acta Sci. Math. 88 (2022), 595-610. (2022) Zbl7672122MR4536393DOI10.1007/s44146-022-00040-z
- Czédli, G., 10.5817/AM2022-1-15, Arch. Math., Brno 58 (2022), 15-33. (2022) Zbl7511505MR4412964DOI10.5817/AM2022-1-15
- Czédli, G., 10.1007/s44146-023-00101-x, (to appear) in Acta Sci. Math. MR4744717DOI10.1007/s44146-023-00101-x
- Czédli, G., 10.1007/s44146-023-00069-8, Acta. Sci. Math. 89 (2023), 319-337. (2023) MR4671397DOI10.1007/s44146-023-00069-8
- Czédli, G., Dékány, T., Gyenizse, G., Kulin, J., 10.1007/s00012-015-0363-y, Algebra Univers. 75 (2016), 33-50. (2016) Zbl1345.06005MR3519569DOI10.1007/s00012-015-0363-y
- Czédli, G., Grätzer, G., A new property of congruence lattices of slim, planar, semimodular lattices, Categ. Gen. Algebr. Struct. Appl. 16 (2022), 1-28. (2022) Zbl1497.06008MR4399396
- Czédli, G., Kurusa, Á., 10.29252/CGASA.11.1.57, Categ. Gen. Algebr. Struct. Appl. 11 (2019), 57-92. (2019) Zbl1428.52002MR3988338DOI10.29252/CGASA.11.1.57
- Czédli, G., Schmidt, E. T., Frankl's conjecture for large semimodular and planar semimodular lattices, Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 47 (2008), 47-53. (2008) Zbl1187.05002MR2482716
- Czédli, G., Schmidt, E. T., 10.1007/s00012-011-0144-1, Algebra Univers. 66 (2011), 69-79. (2011) Zbl1233.06006MR2844921DOI10.1007/s00012-011-0144-1
- Czédli, G., Schmidt, E. T., 10.1007/s11083-011-9215-3, Order 29 (2012), 481-497. (2012) Zbl1257.06005MR2979644DOI10.1007/s11083-011-9215-3
- Grätzer, G., 10.1007/s00012-016-0394-z, Algebra Univers. 76 (2016), 139-154. (2016) Zbl1370.06004MR3551218DOI10.1007/s00012-016-0394-z
- Grätzer, G., 10.1007/s00012-020-0641-1, Algebra Univers. 81 (2020), Article ID 15, 3 pages. (2020) Zbl1477.06024MR4067804DOI10.1007/s00012-020-0641-1
- Grätzer, G., Knapp, E., Notes on planar semimodular lattices. I. Construction, Acta Sci. Math. 73 (2007), 445-462. (2007) Zbl1223.06007MR2380059
- Grätzer, G., Knapp, E., Notes on planar semimodular lattices. III. Rectangular lattices, Acta Sci. Math. 75 (2009), 29-48. (2009) Zbl1199.06029MR2533398
- Grätzer, G., Lakser, H., Schmidt, E. T., 10.4153/CMB-1998-041-7, Can. Math. Bull. 41 (1998), 290-297. (1998) Zbl0918.06004MR1637653DOI10.4153/CMB-1998-041-7
- Kelly, D., Rival, I., 10.4153/CJM-1975-074-0, Can. J. Math. 27 (1975), 636-665. (1975) Zbl0312.06003MR0382086DOI10.4153/CJM-1975-074-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.