Characterization of the order induced by uninorm with the underlying drastic product or drastic sum
Kybernetika (2024)
- Volume: 60, Issue: 6, page 723-739
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topLiu, Zhi-qiang. "Characterization of the order induced by uninorm with the underlying drastic product or drastic sum." Kybernetika 60.6 (2024): 723-739. <http://eudml.org/doc/299885>.
@article{Liu2024,
abstract = {In this article, we investigate the algebraic structures of the partial orders induced by uninorms on a bounded lattice. For a class of uninorms with the underlying drastic product or drastic sum, we first present some conditions making a bounded lattice also a lattice with respect to the order induced by such uninorms. And then we completely characterize the distributivity of the lattices obtained.},
author = {Liu, Zhi-qiang},
journal = {Kybernetika},
keywords = {uninorm; triangular norm; divisibility; partial order; distributive lattice},
language = {eng},
number = {6},
pages = {723-739},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Characterization of the order induced by uninorm with the underlying drastic product or drastic sum},
url = {http://eudml.org/doc/299885},
volume = {60},
year = {2024},
}
TY - JOUR
AU - Liu, Zhi-qiang
TI - Characterization of the order induced by uninorm with the underlying drastic product or drastic sum
JO - Kybernetika
PY - 2024
PB - Institute of Information Theory and Automation AS CR
VL - 60
IS - 6
SP - 723
EP - 739
AB - In this article, we investigate the algebraic structures of the partial orders induced by uninorms on a bounded lattice. For a class of uninorms with the underlying drastic product or drastic sum, we first present some conditions making a bounded lattice also a lattice with respect to the order induced by such uninorms. And then we completely characterize the distributivity of the lattices obtained.
LA - eng
KW - uninorm; triangular norm; divisibility; partial order; distributive lattice
UR - http://eudml.org/doc/299885
ER -
References
top- Aşıcı, E., Karaçal, F., , Inform. Sci. 267 (2014), 323-333. MR3177320DOI
- Aşıcı, E., , Fuzzy Sets Syst. 325 (2017), 35-46. MR3690353DOI
- Aşıcı, E., , Fuzzy Sets Syst. 346 (2018), 72-84. MR3812758DOI
- Birkhoff, G., Lattice Theory, 3rd edition., Colloquium Publishers, American Mathematical Society, 1967. MR0227053
- Calvo, T., Baets, B. De, Fodor, J., , Fuzzy Sets Syst. 120 (2001), 385-394. Zbl0977.03026MR1829256DOI
- Çaylı, G. D., Karaçal, F., Mesiar, R., , Inform. Sci. 367-368 (2016), 221-231. MR3684677DOI
- Duan, Q. H., Zhao, B., , Inform. Sci. 516 (2020), 419-428. MR4047496DOI
- Dubois, D., Prade, H., Fundamentals of Fuzzy Sets., Kluwer Academic Publisher, Boston 2000. MR1890229
- Kesicioğlu, Ü. Ertuğrul M N., Karaçal, F., , Inform. Sci. 330 (2016), 315-327. DOI
- Gupta, V. K., Jayaram, B., , Fuzzy Sets Syst. 405 (2021), 1-17. MR4191306DOI
- Gupta, V. K., Jayaram, B., , Inform. Sci. 566 (2021), 326-346. MR4246139DOI
- Gupta, V. K., Jayaram, B., , Fuzzy Sets Syst. 462 (2023), 108384. MR4584388DOI
- Karaçal, F., Kesicioğlu, M. N., , Kybernetika 47 (2011), 300-314. MR2828579DOI
- Karaçal, F., Mesiar, R., , Fuzzy Sets Syst. 261 (2015), 33-43. MR3291484DOI
- Kesicioğlu, M. N., , Fuzzy Sets Syst. 346 (2018), 55-71. MR3812757DOI
- Kesicioğlu, M. N., Karaçal, F., Mesiar, R., , Fuzzy Sets Syst. 268 (2015), 59-71. MR3320247DOI
- Kesicioğlu, M. N., Ertuğrul, Ü., Karaçal, F., , Inform. Sci. 411 (2017), 39-51. MR3659313DOI
- Kesicioğlu, M. N., Ertuğrul, Ü., Karaçal, F., , Kybernetika 55 (2019), 518-530. MR4015996DOI
- Kesicioğlu, M. N., , Fuzzy Sets Syst. 378 (2020), 23-43. MR4028223DOI
- Klement, E. P., Mesiar, R., Pap, E., Triangular Norms., Springer Netherlands, 2000. Zbl1087.20041MR1790096
- Li, G., Liu, H. W., Su, Y., , Inform. Sci. 317 (2015), 157-169. MR3350704DOI
- Li, W. H., Qin, F., , IEEE Trans. Fuzzy Syst. 28 (2020), 1664-1678. MR4251549DOI
- Liu, Z. Q., , Comp. Appl. Math. 43 (2024), 425. MR4802965DOI
- Liu, Z. Q., , Iran. J. Fuzzy syst. 21(3) (2024), 77-90. MR4781308DOI
- Mayor, G., Torrens, J., , Int. J. Intell. Syst. 8 (1993), 771-778. Zbl0785.68087DOI
- Mesiarová-Zemánková, A., , Int. J. Approx. Reason. 83 (2017), 176-192. MR3614252DOI
- Mesiarová-Zemánková, A., , Inform. Sci. 545 (2021), 499-512. MR4156092DOI
- Mesiarová-Zemánková, A., , Fuzzy Sets Syst. 475 (2023), 108759. MR4659799DOI
- Nanavati, K., Jayaram, B., , Fuzzy Sets Syst. 467 (2023), 108484. MR4598454DOI
- Saminger, B., , Fuzzy Sets Syst. 157 (2006), 1403-1416. Zbl1099.06004MR2226983DOI
- Yager, R. R., Rybalov, A., , Fuzzy Sets Syst. 80 (1996), 111-120. Zbl0871.04007MR1389951DOI
- Yager, R. R., , Fuzzy Sets Syst. 122 (2001), 167-175. Zbl0978.93007MR1839955DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.