Equilibrium analysis of distributed aggregative game with misinformation

Meng Yuan; Zhaoyang Cheng; Te Ma

Kybernetika (2024)

  • Volume: 60, Issue: 6, page 754-778
  • ISSN: 0023-5954

Abstract

top
This paper considers a distributed aggregative game problem for a group of players with misinformation, where each player has a different perception of the game. Player’s deception behavior is inevitable in this situation for reducing its own cost. We utilize hypergame to model the above problems and adopt ϵ -Nash equilibrium for hypergame to investigate whether players believe in their own cognition. Additionally, we propose a distributed deceptive algorithm for a player implementing deception and demonstrate the algorithm converges to ϵ -Nash equilibrium for hypergame. Further, we provide conditions for the deceptive player to enhance its profit and offer the optimal deceptive strategy at a given tolerance ϵ . Finally, we present the effectiveness of the algorithm through numerical experiments.

How to cite

top

Yuan, Meng, Cheng, Zhaoyang, and Ma, Te. "Equilibrium analysis of distributed aggregative game with misinformation." Kybernetika 60.6 (2024): 754-778. <http://eudml.org/doc/299897>.

@article{Yuan2024,
abstract = {This paper considers a distributed aggregative game problem for a group of players with misinformation, where each player has a different perception of the game. Player’s deception behavior is inevitable in this situation for reducing its own cost. We utilize hypergame to model the above problems and adopt $\epsilon $-Nash equilibrium for hypergame to investigate whether players believe in their own cognition. Additionally, we propose a distributed deceptive algorithm for a player implementing deception and demonstrate the algorithm converges to $\epsilon $-Nash equilibrium for hypergame. Further, we provide conditions for the deceptive player to enhance its profit and offer the optimal deceptive strategy at a given tolerance $\epsilon $. Finally, we present the effectiveness of the algorithm through numerical experiments.},
author = {Yuan, Meng, Cheng, Zhaoyang, Ma, Te},
journal = {Kybernetika},
keywords = {distributed aggregative game; deceptive strategy; hypergame; $\epsilon $-Nash equilibrium for hypergame},
language = {eng},
number = {6},
pages = {754-778},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Equilibrium analysis of distributed aggregative game with misinformation},
url = {http://eudml.org/doc/299897},
volume = {60},
year = {2024},
}

TY - JOUR
AU - Yuan, Meng
AU - Cheng, Zhaoyang
AU - Ma, Te
TI - Equilibrium analysis of distributed aggregative game with misinformation
JO - Kybernetika
PY - 2024
PB - Institute of Information Theory and Automation AS CR
VL - 60
IS - 6
SP - 754
EP - 778
AB - This paper considers a distributed aggregative game problem for a group of players with misinformation, where each player has a different perception of the game. Player’s deception behavior is inevitable in this situation for reducing its own cost. We utilize hypergame to model the above problems and adopt $\epsilon $-Nash equilibrium for hypergame to investigate whether players believe in their own cognition. Additionally, we propose a distributed deceptive algorithm for a player implementing deception and demonstrate the algorithm converges to $\epsilon $-Nash equilibrium for hypergame. Further, we provide conditions for the deceptive player to enhance its profit and offer the optimal deceptive strategy at a given tolerance $\epsilon $. Finally, we present the effectiveness of the algorithm through numerical experiments.
LA - eng
KW - distributed aggregative game; deceptive strategy; hypergame; $\epsilon $-Nash equilibrium for hypergame
UR - http://eudml.org/doc/299897
ER -

References

top
  1. Abuzainab, N., Saad, W., , IEEE Trans. Commun. 66 (2018), 12, 6643-6658. DOI
  2. Chen, H., Li, Y., Louie, R. H., Vucetic, B., , IEEE Trans. Smart Grid 5 (2014), 4, 1744-1754. DOI
  3. Chen, J., Zhu, Q., , IEEE Trans. Inform. Forensics Security 14 (2019), 11, 2958-2971. DOI
  4. Cheng, Z., Chen, G., Hong, Y., , IEEE Trans. Inform. Forensics Security 17 (2022), 954-969. DOI
  5. Hespanha, J. P., Ateskan, Y. S., al., H. Kizilocak et, Deception in non-cooperative games with partial information., In: Proc. 2nd DARPA-JFACC Symposium on Advances in Enterprise Control, Citeseer 2000, pp. 1-9. 
  6. Huang, S., Lei, J., Hong, Y., , IEEE Trans. Automat. Control 68 (2022), 3, 1753-1759. MR4557578DOI
  7. Huang, L., Zhu, Q., , IEEE Trans. Inform. Forensics Security 16 (2021), 4843-4856. DOI
  8. Jelassi, S., Domingo-Enrich, C., Scieur, D., Mensch, A., Bruna, J., Extragradient with player sampling for faster Nash equilibrium finding., In: Proc. International Conference on Machine Learning 2020. 
  9. Jin, R., He, X., Dai, H., , IEEE Trans. Inform. Forensics Security 14 (2019), 12, 3273-3286. DOI
  10. Johansson, B., Keviczky, T., Johansson, M., Johansson, K. H., , In: 47th IEEE Conference on Decision and Control, IEEE 2008, pp. 4185-4190. DOI
  11. Koshal, J., Nedić, A., Shanbhag, U. V., , Oper. Res. 64 (2016), 3, 680-704. MR3515205DOI
  12. Kovach, N. S., Gibson, A. S., Lamont, G. B., Hypergame theory: a model for conflict, misperception, and deception., Game Theory (2015). MR3391789
  13. Lei, J., Shanbhag, U. V., , Operations Research 68 (2020), 6, 1742-1766. MR4217264DOI
  14. Liang, S., Yi, P., Hong, Y., Peng, K., , Autonomous Intell. Systems 2 (2022), 1, 6. MR4335720DOI
  15. Ma, J., Yang, Z., Chen, Z., , Kybernetika 59 (2023), 4, 612-632. MR4660381DOI
  16. Meng, Y., Broom, M., Li, A., , J. Royal Soc. Interface 20 (2023), 206, 20230295. DOI
  17. Meng, Y., Cornelius, S. P., Liu, Y. Y., Li, A., , Nature Commun. 15 (2024), 1, 3125. DOI
  18. Nedic, A., Ozdaglar, A., Parrilo, P. A., , IEEE Trans. Automat. Control 55 (2010), 4, 922-938. MR2654432DOI
  19. Nguyen, K. C., Alpcan, T., Basar, T., , In: 2009 IEEE International Conference on Communications, pp. 1-6. DOI
  20. Paccagnan, D., Gentile, B., Parise, F., Kamgarpour, M., Lygeros, J., , In: 55th IEEE Conference on Decision and Control, IEEE 2016, pp. 6123-6128. DOI
  21. Paccagnan, D., Gentile, B., Parise, F., Kamgarpour, M., Lygeros, J., , IEEE Trans. Automat. Control 64 (2018), 4, 1373-1388. MR3936417DOI
  22. Pawlick, J., Colbert, E., Zhu, Q., , IEEE Trans. Inform. Forensics Security 14 (2018), 7, 1871-1886. DOI
  23. Sasaki, Y., Preservation of misperceptions-stability analysis of hypergames., In: Proc. 52nd Annual Meeting of the ISSS-2008, Madison 2008. 
  24. Sasaki, Y., , Ann. Oper. Res. 256 (2017), 271-284. MR3697211DOI
  25. Scutari, G., Palomar, D. P., Facchinei, F., Pang, J.-S., , IEEE Signal Process. Magazine 27 (2010), 3, 35-49. MR2756856DOI
  26. Wang, M., Hipel, K. W., Fraser, N. M., , Behavioral Sci. 33 (1988), 3, 207-223. MR0946274DOI
  27. Wang, J., Zhang, J. F., He, X., , Automatica 142 (2022), 110440. MR4437624DOI
  28. Xu, G., Chen, G., Qi, H., Hong, Y., , IEEE Trans. Cybernet. 53 (2023), 7, 4375-4387. DOI
  29. Yilmaz, T., Ulusoy, Ö., , IEEE Trans. Comput. Social Systems (2022). MR4682418DOI
  30. Yu, S., Sun, Q., Yang, Z., , Control Theory Technol. 21 (2023), 1, 110-113. MR4253447DOI
  31. Zhang, H., Qin, H., Chen, G., , Kybernetika (2023), 575-591, 09 2023. MR4660379DOI
  32. Zhang, T. Y., Ye, D., , Automatica 120 (2020), 109117. MR4118793DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.