The Fourier transform in Lebesgue spaces
Czechoslovak Mathematical Journal (2025)
- Issue: 1, page 179-191
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topTalvila, Erik. "The Fourier transform in Lebesgue spaces." Czechoslovak Mathematical Journal (2025): 179-191. <http://eudml.org/doc/299908>.
@article{Talvila2025,
abstract = {For each $f\in L^p(\{\mathbb \{R\})\}$ ($1\le p<\infty $) it is shown that the Fourier transform is the distributional derivative of a Hölder continuous function. For each $p$, a norm is defined so that the space of Fourier transforms is isometrically isomorphic to $L^p(\{\mathbb \{R\})\}$. There is an exchange theorem and inversion in norm.},
author = {Talvila, Erik},
journal = {Czechoslovak Mathematical Journal},
keywords = {Fourier transform; Lebesgue space; tempered distribution; generalised function; Banach space; continuous primitive integral},
language = {eng},
number = {1},
pages = {179-191},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The Fourier transform in Lebesgue spaces},
url = {http://eudml.org/doc/299908},
year = {2025},
}
TY - JOUR
AU - Talvila, Erik
TI - The Fourier transform in Lebesgue spaces
JO - Czechoslovak Mathematical Journal
PY - 2025
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 179
EP - 191
AB - For each $f\in L^p({\mathbb {R})}$ ($1\le p<\infty $) it is shown that the Fourier transform is the distributional derivative of a Hölder continuous function. For each $p$, a norm is defined so that the space of Fourier transforms is isometrically isomorphic to $L^p({\mathbb {R})}$. There is an exchange theorem and inversion in norm.
LA - eng
KW - Fourier transform; Lebesgue space; tempered distribution; generalised function; Banach space; continuous primitive integral
UR - http://eudml.org/doc/299908
ER -
References
top- Abdelhakim, A. A., 10.48550/arXiv.1806.03912, Available at https://arxiv.org/abs/1806.03912 (2020), 8 pages. (2020) DOI10.48550/arXiv.1806.03912
- Babenko, K. I., An inequality in the theory of Fourier integrals, Izv. Akad. Nauk SSSR, Ser. Mat. 25 (1961), 531-542 Russian. (1961) Zbl0122.34404MR0138939
- Beckner, W., 10.2307/1970980, Ann. Math. (2) 102 (1975), 159-182. (1975) Zbl0338.42017MR0385456DOI10.2307/1970980
- Bochner, S., 10.1515/9781400881994, Annals of Mathematics Studies 42. Princeton University Press, Princeton (1959). (1959) Zbl0085.31802MR0107124DOI10.1515/9781400881994
- W. F. Donoghue, Jr., Distributions and Fourier Transforms, Pure and Applied Mathematics 32. Academic Press, New York (1969). (1969) Zbl0188.18102MR3363413
- Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G., Tables of Integral Transforms. Vol. I, McGraw-Hill, New York (1954). (1954) Zbl0055.36401MR0061695
- Folland, G. B., Real Analysis: Modern Techniques and Their Applications, John Wiley, New York (1999). (1999) Zbl0924.28001MR1681462
- Friedlander, F. G., Introduction to the Theory of Distributions, Cambridge University Press, Cambridge (1998). (1998) Zbl0971.46024MR1721032
- Grafakos, L., 10.1007/978-0-387-09432-8, Graduate Texts in Mathematics 249. Springer, New York (2008). (2008) Zbl1220.42001MR2445437DOI10.1007/978-0-387-09432-8
- Lieb, E. H., Loss, M., 10.1090/gsm/014, Graduate Studies in Mathematics 14. AMS, Providence (2001). (2001) Zbl0966.26002MR1817225DOI10.1090/gsm/014
- McLeod, R. M., 10.5948/UPO9781614440208, The Carus Mathematical Monographs 20. The Mathematical Association of America, Washington (1980). (1980) Zbl0486.26005MR0588510DOI10.5948/UPO9781614440208
- Stein, E. M., Weiss, G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series 32. Princeton University Press, Princeton (1971). (1971) Zbl0232.42007MR0304972
- Talvila, E., 10.14321/realanalexch.33.1.0051, Real Anal. Exch. 33 (2007/08), 51-82. (2007) Zbl1154.26011MR2402863DOI10.14321/realanalexch.33.1.0051
- Talvila, E., 10.1080/00029890.2019.1632629, Am. Math. Mon. 126 (2019), 717-727. (2019) Zbl1422.42007MR4009888DOI10.1080/00029890.2019.1632629
- Titchmarsh, E. C., 10.1112/plms/s2-23.1.279, Proc. Lond. Math. Soc. (2) 23 (1924), 279-289 9999JFM99999 50.0201.02. (1924) MR1575191DOI10.1112/plms/s2-23.1.279
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.