The Fourier transform in Lebesgue spaces

Erik Talvila

Czechoslovak Mathematical Journal (2025)

  • Issue: 1, page 179-191
  • ISSN: 0011-4642

Abstract

top
For each f L p ( ) ( 1 p < ) it is shown that the Fourier transform is the distributional derivative of a Hölder continuous function. For each p , a norm is defined so that the space of Fourier transforms is isometrically isomorphic to L p ( ) . There is an exchange theorem and inversion in norm.

How to cite

top

Talvila, Erik. "The Fourier transform in Lebesgue spaces." Czechoslovak Mathematical Journal (2025): 179-191. <http://eudml.org/doc/299908>.

@article{Talvila2025,
abstract = {For each $f\in L^p(\{\mathbb \{R\})\}$ ($1\le p<\infty $) it is shown that the Fourier transform is the distributional derivative of a Hölder continuous function. For each $p$, a norm is defined so that the space of Fourier transforms is isometrically isomorphic to $L^p(\{\mathbb \{R\})\}$. There is an exchange theorem and inversion in norm.},
author = {Talvila, Erik},
journal = {Czechoslovak Mathematical Journal},
keywords = {Fourier transform; Lebesgue space; tempered distribution; generalised function; Banach space; continuous primitive integral},
language = {eng},
number = {1},
pages = {179-191},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The Fourier transform in Lebesgue spaces},
url = {http://eudml.org/doc/299908},
year = {2025},
}

TY - JOUR
AU - Talvila, Erik
TI - The Fourier transform in Lebesgue spaces
JO - Czechoslovak Mathematical Journal
PY - 2025
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 179
EP - 191
AB - For each $f\in L^p({\mathbb {R})}$ ($1\le p<\infty $) it is shown that the Fourier transform is the distributional derivative of a Hölder continuous function. For each $p$, a norm is defined so that the space of Fourier transforms is isometrically isomorphic to $L^p({\mathbb {R})}$. There is an exchange theorem and inversion in norm.
LA - eng
KW - Fourier transform; Lebesgue space; tempered distribution; generalised function; Banach space; continuous primitive integral
UR - http://eudml.org/doc/299908
ER -

References

top
  1. Abdelhakim, A. A., 10.48550/arXiv.1806.03912, Available at https://arxiv.org/abs/1806.03912 (2020), 8 pages. (2020) DOI10.48550/arXiv.1806.03912
  2. Babenko, K. I., An inequality in the theory of Fourier integrals, Izv. Akad. Nauk SSSR, Ser. Mat. 25 (1961), 531-542 Russian. (1961) Zbl0122.34404MR0138939
  3. Beckner, W., 10.2307/1970980, Ann. Math. (2) 102 (1975), 159-182. (1975) Zbl0338.42017MR0385456DOI10.2307/1970980
  4. Bochner, S., 10.1515/9781400881994, Annals of Mathematics Studies 42. Princeton University Press, Princeton (1959). (1959) Zbl0085.31802MR0107124DOI10.1515/9781400881994
  5. W. F. Donoghue, Jr., Distributions and Fourier Transforms, Pure and Applied Mathematics 32. Academic Press, New York (1969). (1969) Zbl0188.18102MR3363413
  6. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G., Tables of Integral Transforms. Vol. I, McGraw-Hill, New York (1954). (1954) Zbl0055.36401MR0061695
  7. Folland, G. B., Real Analysis: Modern Techniques and Their Applications, John Wiley, New York (1999). (1999) Zbl0924.28001MR1681462
  8. Friedlander, F. G., Introduction to the Theory of Distributions, Cambridge University Press, Cambridge (1998). (1998) Zbl0971.46024MR1721032
  9. Grafakos, L., 10.1007/978-0-387-09432-8, Graduate Texts in Mathematics 249. Springer, New York (2008). (2008) Zbl1220.42001MR2445437DOI10.1007/978-0-387-09432-8
  10. Lieb, E. H., Loss, M., 10.1090/gsm/014, Graduate Studies in Mathematics 14. AMS, Providence (2001). (2001) Zbl0966.26002MR1817225DOI10.1090/gsm/014
  11. McLeod, R. M., 10.5948/UPO9781614440208, The Carus Mathematical Monographs 20. The Mathematical Association of America, Washington (1980). (1980) Zbl0486.26005MR0588510DOI10.5948/UPO9781614440208
  12. Stein, E. M., Weiss, G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series 32. Princeton University Press, Princeton (1971). (1971) Zbl0232.42007MR0304972
  13. Talvila, E., 10.14321/realanalexch.33.1.0051, Real Anal. Exch. 33 (2007/08), 51-82. (2007) Zbl1154.26011MR2402863DOI10.14321/realanalexch.33.1.0051
  14. Talvila, E., 10.1080/00029890.2019.1632629, Am. Math. Mon. 126 (2019), 717-727. (2019) Zbl1422.42007MR4009888DOI10.1080/00029890.2019.1632629
  15. Titchmarsh, E. C., 10.1112/plms/s2-23.1.279, Proc. Lond. Math. Soc. (2) 23 (1924), 279-289 9999JFM99999 50.0201.02. (1924) MR1575191DOI10.1112/plms/s2-23.1.279

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.