Stieltjes differential problems with general boundary value conditions. Existence and bounds of solutions

Valeria Marraffa; Bianca Satco

Czechoslovak Mathematical Journal (2025)

  • Issue: 1, page 235-255
  • ISSN: 0011-4642

Abstract

top
We are concerned with first order set-valued problems with very general boundary value conditions u g ' ( t ) F ( t , u ( t ) ) , μ g -a.e. [ 0 , T ] , L ( u ( 0 ) , T ) ) = 0 involving the Stieltjes derivative with respect to a left-continuous nondecreasing function g : [ 0 , T ] , a Carathéodory multifunction F : [ 0 , T ] × 𝒫 ( ) and a continuous L : 2 . Using appropriate notions of lower and upper solutions, we prove the existence of solutions via a fixed point result for condensing mappings. In the periodic single-valued case, combining an existence theory for the linear case with a recent result involving lower and upper solutions (which can be seen as a consequence of our existence theorem mentioned before), we get not only the existence of solutions, but also lower and upper bounds, respectively, by imposing an estimation for the right-hand side.

How to cite

top

Marraffa, Valeria, and Satco, Bianca. "Stieltjes differential problems with general boundary value conditions. Existence and bounds of solutions." Czechoslovak Mathematical Journal (2025): 235-255. <http://eudml.org/doc/299921>.

@article{Marraffa2025,
abstract = {We are concerned with first order set-valued problems with very general boundary value conditions \[ \{\left\lbrace \begin\{array\}\{ll\} u^\{\prime \}\_g(t)\in F(t,u(t)),\quad \mu \_g \text\{-a.e.\} \in [0,T] , \\ L(u(0),T))=0 \end\{array\}\right.\} \] involving the Stieltjes derivative with respect to a left-continuous nondecreasing function $g\colon [0,T]\rightarrow \mathbb \{R\}$, a Carathéodory multifunction $F\colon [0,T]\times \mathbb \{R\}\rightarrow \mathcal \{P\}(\mathbb \{R\})$ and a continuous $L\colon \mathbb \{R\}^2\rightarrow \mathbb \{R\}$. Using appropriate notions of lower and upper solutions, we prove the existence of solutions via a fixed point result for condensing mappings. In the periodic single-valued case, combining an existence theory for the linear case with a recent result involving lower and upper solutions (which can be seen as a consequence of our existence theorem mentioned before), we get not only the existence of solutions, but also lower and upper bounds, respectively, by imposing an estimation for the right-hand side.},
author = {Marraffa, Valeria, Satco, Bianca},
journal = {Czechoslovak Mathematical Journal},
keywords = {boundary value differential inclusion; Stieltjes derivative; Kurzweil-Stieltjes integral; periodic problem},
language = {eng},
number = {1},
pages = {235-255},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Stieltjes differential problems with general boundary value conditions. Existence and bounds of solutions},
url = {http://eudml.org/doc/299921},
year = {2025},
}

TY - JOUR
AU - Marraffa, Valeria
AU - Satco, Bianca
TI - Stieltjes differential problems with general boundary value conditions. Existence and bounds of solutions
JO - Czechoslovak Mathematical Journal
PY - 2025
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 235
EP - 255
AB - We are concerned with first order set-valued problems with very general boundary value conditions \[ {\left\lbrace \begin{array}{ll} u^{\prime }_g(t)\in F(t,u(t)),\quad \mu _g \text{-a.e.} \in [0,T] , \\ L(u(0),T))=0 \end{array}\right.} \] involving the Stieltjes derivative with respect to a left-continuous nondecreasing function $g\colon [0,T]\rightarrow \mathbb {R}$, a Carathéodory multifunction $F\colon [0,T]\times \mathbb {R}\rightarrow \mathcal {P}(\mathbb {R})$ and a continuous $L\colon \mathbb {R}^2\rightarrow \mathbb {R}$. Using appropriate notions of lower and upper solutions, we prove the existence of solutions via a fixed point result for condensing mappings. In the periodic single-valued case, combining an existence theory for the linear case with a recent result involving lower and upper solutions (which can be seen as a consequence of our existence theorem mentioned before), we get not only the existence of solutions, but also lower and upper bounds, respectively, by imposing an estimation for the right-hand side.
LA - eng
KW - boundary value differential inclusion; Stieltjes derivative; Kurzweil-Stieltjes integral; periodic problem
UR - http://eudml.org/doc/299921
ER -

References

top
  1. Aubin, J.-P., Frankowska, H., Set-Valued Analysis, Systems and Control: Foundations and Applications 2. Birkhäuser, Boston (1990). (1990) MR1048347
  2. Banas, J., Goebel, K., Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics 60. Marcel Dekker, New York (1980). (1980) Zbl0441.47056MR0591679
  3. Benchohra, M., Ntouyas, S. K., The lower and upper solutions method for first order differential inclusions with nonlinear boundary conditions, JIPAM, J. Inequal. Pure Appl. Math. 3 (2002), Article ID 14, 8 pages. (2002) Zbl1003.34013MR1888929
  4. Castaing, C., Valadier, M., 10.1007/BFb0087685, Lecture Notes in Mathematics 580. Springer, Berlin (1977). (1977) Zbl0346.46038MR0467310DOI10.1007/BFb0087685
  5. Cichoń, M., Satco, B. R., 10.1186/1687-1847-2014-56, Adv. Difference Equ. 2014 (2014), Article ID 56, 18 pages. (2014) Zbl1350.49014MR3348625DOI10.1186/1687-1847-2014-56
  6. Cichoń, M., Satco, B., Sikorska-Nowak, A., 10.1016/j.amc.2011.07.057, Appl. Math. Comput. 218 (2011), 2449-2458. (2011) Zbl1247.34138MR2838154DOI10.1016/j.amc.2011.07.057
  7. Piazza, L. Di, Marraffa, V., Satco, B., 10.1007/s10231-019-00857-6, Ann. Mat. Pura Appl. (4) 198 (2019), 2123-2140. (2019) Zbl1440.34005MR4031842DOI10.1007/s10231-019-00857-6
  8. Piazza, L. Di, Marraffa, V., Satco, B., 10.1007/s11228-020-00559-9, Set-Valued Var. Anal. 29 (2021), 361-382. (2021) Zbl1479.34008MR4272032DOI10.1007/s11228-020-00559-9
  9. Dimitriu, G., Satco, B., 10.1063/1.4964972, Application of Mathematics in Technical and Natural Sciences AIP Conference Proceedings 1773. AIP, New York (2016), Article ID 050002. (2016) DOI10.1063/1.4964972
  10. Federson, M., Mesquita, J. G., Slavík, A., 10.1016/j.jde.2011.11.005, J. Diff. Equations 252 (2012), 3816-3847. (2012) Zbl1239.34076MR2875603DOI10.1016/j.jde.2011.11.005
  11. Federson, M., Mesquita, J. G., Slavík, A., 10.1002/mana.201200006, Math. Nachr. 286 (2013), 181-204. (2013) Zbl1266.34115MR3021475DOI10.1002/mana.201200006
  12. Fraňková, D., 10.21136/MB.1991.126195, Math. Bohem. 116 (1991), 20-59. (1991) Zbl0724.26009MR1100424DOI10.21136/MB.1991.126195
  13. Frigon, M., Gilbert, H., Systems of first order inclusions on time scales, Topol. Methods Nonlinear Anal. 37 (2011), 147-163. (2011) Zbl1271.34092MR2839521
  14. Frigon, M., Pouso, R. López, 10.1515/anona-2015-0158, Adv. Nonlinear Anal. 6 (2017), 13-36. (2017) Zbl1361.34010MR3604936DOI10.1515/anona-2015-0158
  15. Gordon, R. A., 10.1090/gsm/004, Graduate Studies in Mathematics 4. AMS, Providence (1994). (1994) Zbl0807.26004MR1288751DOI10.1090/gsm/004
  16. Halidias, N., Papageorgiou, N. S., Second-order multivalued boundary value problems, Arch. Math., Brno 34 (1998), 267-284. (1998) Zbl0915.34021MR1645320
  17. Kurzweil, J., 10.21136/CMJ.1957.100258, Czech. Math. J. 7 (1957), 418-449. (1957) Zbl0090.30002MR0111875DOI10.21136/CMJ.1957.100258
  18. Kurzweil, J., Nichtabsolut konvergente Integrale, Teubner-Texte zur Mathematik 26. B. G. Teubner, Leipzig (1980), German. (1980) Zbl0441.28001MR0597703
  19. Pouso, R. López, Albés, I. Márquez, 10.1016/j.jde.2018.01.006, J. Differ. Equations 264 (2018), 5388-5407. (2018) Zbl1386.34021MR3760178DOI10.1016/j.jde.2018.01.006
  20. Pouso, R. López, Rodríguez, A., 10.14321/realanalexch.40.2.0319, Real Anal. Exch. 40 (2015), 319-353. (2015) Zbl1384.26024MR3499768DOI10.14321/realanalexch.40.2.0319
  21. Maia, L., Khattabi, N. El, Frigon, M., 10.1515/ans-2022-0038, Adv. Nonlinear Stud. 22 (2022), 684-710. (2022) Zbl1509.34005MR4521244DOI10.1515/ans-2022-0038
  22. Albés, I. Márquez, 10.14232/ejqtde.2021.1.42, Electron. J. Qual. Theory Differ. Equ. 2021 (2021), Article ID 42, 18 pages. (2021) Zbl1499.34099MR4275332DOI10.14232/ejqtde.2021.1.42
  23. Marraffa, V., Satco, B., 10.3390/math10010055, Mathematics 10 (2022), Article ID 55, 17 pages. (2022) DOI10.3390/math10010055
  24. Martelli, M., A Rothe's type theorem for non-compact acyclic-valued maps, Boll. Unione Mat. Ital., IV. Ser. 11 (1975), 70-76. (1975) Zbl0314.47035MR0394752
  25. Monteiro, G. A., Satco, B., 10.14232/ejqtde.2017.1.7, Electron. J. Qual. Theory Differ. Equ. 2017 (2017), Article ID 7, 26 pages. (2017) Zbl1413.34062MR3606985DOI10.14232/ejqtde.2017.1.7
  26. Monteiro, G. A., Slavík, A., 10.1016/j.jmaa.2016.06.035, J. Math. Anal. Appl. 444 (2016), 568-597. (2016) Zbl1356.34094MR3523392DOI10.1016/j.jmaa.2016.06.035
  27. Monteiro, G. A., Slavík, A., Tvrdý, M., 10.1142/9432, Series in Real Analysis 15. World Scientific, Hackensack (2019). (2019) Zbl1437.28001MR3839599DOI10.1142/9432
  28. Saks, S., Theory of the Integral, Monografie Matematyczne 7. Instytut Matematyczny PAN, Warszawa (1937),9999JFM99999 63.0183.05. (1937) Zbl0017.30004MR0167578
  29. Satco, B., 10.1007/s10587-006-0078-5, Czech. Math. J. 56 (2006), 1029-1047. (2006) Zbl1164.28301MR2261675DOI10.1007/s10587-006-0078-5
  30. Satco, B., 10.1016/j.jmaa.2007.02.050, J. Math. Anal. Appl. 336 (2007), 44-53. (2007) Zbl1123.45004MR2348489DOI10.1016/j.jmaa.2007.02.050
  31. Satco, B., Nonlinear Volterra integral equations in Henstock integrability setting, Electron. J. Differ. Equ. 2008 (2008), Article ID 39, 9 pages. (2008) Zbl1169.45300MR2392943
  32. Satco, B., 10.14232/ejqtde.2015.1.79, Electron. J. Qual. Theory Differ. Equ. 2015 (2015), Article ID 79, 15 pages. (2015) Zbl1349.34051MR3425546DOI10.14232/ejqtde.2015.1.79
  33. Satco, B., Smyrlis, G., 10.3390/math8122142, Mathematics 8 (2020), Article ID 2142, 23 pages. (2020) MR4161917DOI10.3390/math8122142
  34. Satco, B., Smyrlis, G., 10.1007/s11784-020-00825-1, J. Fixed Point Theory Appl. 22 (2020), Article ID 94, 23 pages. (2020) Zbl1464.34008MR4161917DOI10.1007/s11784-020-00825-1
  35. Schwabik, Š., 10.1142/1875, Series in Real Analysis 5. World Scientific, Singapore (1992). (1992) Zbl0781.34003MR1200241DOI10.1142/1875
  36. Tvrdý, M., Differential and integral equations in the space of regulated functions, Mem. Differ. Equ. Math. Phys. 25 (2002), 1-104. (2002) Zbl1081.34504MR1903190
  37. Young, W. H., 10.1112/plms/s2-15.1.35, Proc. Lond. Math. Soc. (2) 15 (1916), 35-63 9999JFM99999 46.0386.01. (1916) MR1576571DOI10.1112/plms/s2-15.1.35

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.