Stieltjes differential problems with general boundary value conditions. Existence and bounds of solutions
Valeria Marraffa; Bianca Satco
Czechoslovak Mathematical Journal (2025)
- Issue: 1, page 235-255
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMarraffa, Valeria, and Satco, Bianca. "Stieltjes differential problems with general boundary value conditions. Existence and bounds of solutions." Czechoslovak Mathematical Journal (2025): 235-255. <http://eudml.org/doc/299921>.
@article{Marraffa2025,
abstract = {We are concerned with first order set-valued problems with very general boundary value conditions \[ \{\left\lbrace \begin\{array\}\{ll\} u^\{\prime \}\_g(t)\in F(t,u(t)),\quad \mu \_g \text\{-a.e.\} \in [0,T] , \\ L(u(0),T))=0 \end\{array\}\right.\} \]
involving the Stieltjes derivative with respect to a left-continuous nondecreasing function $g\colon [0,T]\rightarrow \mathbb \{R\}$, a Carathéodory multifunction $F\colon [0,T]\times \mathbb \{R\}\rightarrow \mathcal \{P\}(\mathbb \{R\})$ and a continuous $L\colon \mathbb \{R\}^2\rightarrow \mathbb \{R\}$. Using appropriate notions of lower and upper solutions, we prove the existence of solutions via a fixed point result for condensing mappings. In the periodic single-valued case, combining an existence theory for the linear case with a recent result involving lower and upper solutions (which can be seen as a consequence of our existence theorem mentioned before), we get not only the existence of solutions, but also lower and upper bounds, respectively, by imposing an estimation for the right-hand side.},
author = {Marraffa, Valeria, Satco, Bianca},
journal = {Czechoslovak Mathematical Journal},
keywords = {boundary value differential inclusion; Stieltjes derivative; Kurzweil-Stieltjes integral; periodic problem},
language = {eng},
number = {1},
pages = {235-255},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Stieltjes differential problems with general boundary value conditions. Existence and bounds of solutions},
url = {http://eudml.org/doc/299921},
year = {2025},
}
TY - JOUR
AU - Marraffa, Valeria
AU - Satco, Bianca
TI - Stieltjes differential problems with general boundary value conditions. Existence and bounds of solutions
JO - Czechoslovak Mathematical Journal
PY - 2025
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 235
EP - 255
AB - We are concerned with first order set-valued problems with very general boundary value conditions \[ {\left\lbrace \begin{array}{ll} u^{\prime }_g(t)\in F(t,u(t)),\quad \mu _g \text{-a.e.} \in [0,T] , \\ L(u(0),T))=0 \end{array}\right.} \]
involving the Stieltjes derivative with respect to a left-continuous nondecreasing function $g\colon [0,T]\rightarrow \mathbb {R}$, a Carathéodory multifunction $F\colon [0,T]\times \mathbb {R}\rightarrow \mathcal {P}(\mathbb {R})$ and a continuous $L\colon \mathbb {R}^2\rightarrow \mathbb {R}$. Using appropriate notions of lower and upper solutions, we prove the existence of solutions via a fixed point result for condensing mappings. In the periodic single-valued case, combining an existence theory for the linear case with a recent result involving lower and upper solutions (which can be seen as a consequence of our existence theorem mentioned before), we get not only the existence of solutions, but also lower and upper bounds, respectively, by imposing an estimation for the right-hand side.
LA - eng
KW - boundary value differential inclusion; Stieltjes derivative; Kurzweil-Stieltjes integral; periodic problem
UR - http://eudml.org/doc/299921
ER -
References
top- Aubin, J.-P., Frankowska, H., Set-Valued Analysis, Systems and Control: Foundations and Applications 2. Birkhäuser, Boston (1990). (1990) MR1048347
- Banas, J., Goebel, K., Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics 60. Marcel Dekker, New York (1980). (1980) Zbl0441.47056MR0591679
- Benchohra, M., Ntouyas, S. K., The lower and upper solutions method for first order differential inclusions with nonlinear boundary conditions, JIPAM, J. Inequal. Pure Appl. Math. 3 (2002), Article ID 14, 8 pages. (2002) Zbl1003.34013MR1888929
- Castaing, C., Valadier, M., 10.1007/BFb0087685, Lecture Notes in Mathematics 580. Springer, Berlin (1977). (1977) Zbl0346.46038MR0467310DOI10.1007/BFb0087685
- Cichoń, M., Satco, B. R., 10.1186/1687-1847-2014-56, Adv. Difference Equ. 2014 (2014), Article ID 56, 18 pages. (2014) Zbl1350.49014MR3348625DOI10.1186/1687-1847-2014-56
- Cichoń, M., Satco, B., Sikorska-Nowak, A., 10.1016/j.amc.2011.07.057, Appl. Math. Comput. 218 (2011), 2449-2458. (2011) Zbl1247.34138MR2838154DOI10.1016/j.amc.2011.07.057
- Piazza, L. Di, Marraffa, V., Satco, B., 10.1007/s10231-019-00857-6, Ann. Mat. Pura Appl. (4) 198 (2019), 2123-2140. (2019) Zbl1440.34005MR4031842DOI10.1007/s10231-019-00857-6
- Piazza, L. Di, Marraffa, V., Satco, B., 10.1007/s11228-020-00559-9, Set-Valued Var. Anal. 29 (2021), 361-382. (2021) Zbl1479.34008MR4272032DOI10.1007/s11228-020-00559-9
- Dimitriu, G., Satco, B., 10.1063/1.4964972, Application of Mathematics in Technical and Natural Sciences AIP Conference Proceedings 1773. AIP, New York (2016), Article ID 050002. (2016) DOI10.1063/1.4964972
- Federson, M., Mesquita, J. G., Slavík, A., 10.1016/j.jde.2011.11.005, J. Diff. Equations 252 (2012), 3816-3847. (2012) Zbl1239.34076MR2875603DOI10.1016/j.jde.2011.11.005
- Federson, M., Mesquita, J. G., Slavík, A., 10.1002/mana.201200006, Math. Nachr. 286 (2013), 181-204. (2013) Zbl1266.34115MR3021475DOI10.1002/mana.201200006
- Fraňková, D., 10.21136/MB.1991.126195, Math. Bohem. 116 (1991), 20-59. (1991) Zbl0724.26009MR1100424DOI10.21136/MB.1991.126195
- Frigon, M., Gilbert, H., Systems of first order inclusions on time scales, Topol. Methods Nonlinear Anal. 37 (2011), 147-163. (2011) Zbl1271.34092MR2839521
- Frigon, M., Pouso, R. López, 10.1515/anona-2015-0158, Adv. Nonlinear Anal. 6 (2017), 13-36. (2017) Zbl1361.34010MR3604936DOI10.1515/anona-2015-0158
- Gordon, R. A., 10.1090/gsm/004, Graduate Studies in Mathematics 4. AMS, Providence (1994). (1994) Zbl0807.26004MR1288751DOI10.1090/gsm/004
- Halidias, N., Papageorgiou, N. S., Second-order multivalued boundary value problems, Arch. Math., Brno 34 (1998), 267-284. (1998) Zbl0915.34021MR1645320
- Kurzweil, J., 10.21136/CMJ.1957.100258, Czech. Math. J. 7 (1957), 418-449. (1957) Zbl0090.30002MR0111875DOI10.21136/CMJ.1957.100258
- Kurzweil, J., Nichtabsolut konvergente Integrale, Teubner-Texte zur Mathematik 26. B. G. Teubner, Leipzig (1980), German. (1980) Zbl0441.28001MR0597703
- Pouso, R. López, Albés, I. Márquez, 10.1016/j.jde.2018.01.006, J. Differ. Equations 264 (2018), 5388-5407. (2018) Zbl1386.34021MR3760178DOI10.1016/j.jde.2018.01.006
- Pouso, R. López, Rodríguez, A., 10.14321/realanalexch.40.2.0319, Real Anal. Exch. 40 (2015), 319-353. (2015) Zbl1384.26024MR3499768DOI10.14321/realanalexch.40.2.0319
- Maia, L., Khattabi, N. El, Frigon, M., 10.1515/ans-2022-0038, Adv. Nonlinear Stud. 22 (2022), 684-710. (2022) Zbl1509.34005MR4521244DOI10.1515/ans-2022-0038
- Albés, I. Márquez, 10.14232/ejqtde.2021.1.42, Electron. J. Qual. Theory Differ. Equ. 2021 (2021), Article ID 42, 18 pages. (2021) Zbl1499.34099MR4275332DOI10.14232/ejqtde.2021.1.42
- Marraffa, V., Satco, B., 10.3390/math10010055, Mathematics 10 (2022), Article ID 55, 17 pages. (2022) DOI10.3390/math10010055
- Martelli, M., A Rothe's type theorem for non-compact acyclic-valued maps, Boll. Unione Mat. Ital., IV. Ser. 11 (1975), 70-76. (1975) Zbl0314.47035MR0394752
- Monteiro, G. A., Satco, B., 10.14232/ejqtde.2017.1.7, Electron. J. Qual. Theory Differ. Equ. 2017 (2017), Article ID 7, 26 pages. (2017) Zbl1413.34062MR3606985DOI10.14232/ejqtde.2017.1.7
- Monteiro, G. A., Slavík, A., 10.1016/j.jmaa.2016.06.035, J. Math. Anal. Appl. 444 (2016), 568-597. (2016) Zbl1356.34094MR3523392DOI10.1016/j.jmaa.2016.06.035
- Monteiro, G. A., Slavík, A., Tvrdý, M., 10.1142/9432, Series in Real Analysis 15. World Scientific, Hackensack (2019). (2019) Zbl1437.28001MR3839599DOI10.1142/9432
- Saks, S., Theory of the Integral, Monografie Matematyczne 7. Instytut Matematyczny PAN, Warszawa (1937),9999JFM99999 63.0183.05. (1937) Zbl0017.30004MR0167578
- Satco, B., 10.1007/s10587-006-0078-5, Czech. Math. J. 56 (2006), 1029-1047. (2006) Zbl1164.28301MR2261675DOI10.1007/s10587-006-0078-5
- Satco, B., 10.1016/j.jmaa.2007.02.050, J. Math. Anal. Appl. 336 (2007), 44-53. (2007) Zbl1123.45004MR2348489DOI10.1016/j.jmaa.2007.02.050
- Satco, B., Nonlinear Volterra integral equations in Henstock integrability setting, Electron. J. Differ. Equ. 2008 (2008), Article ID 39, 9 pages. (2008) Zbl1169.45300MR2392943
- Satco, B., 10.14232/ejqtde.2015.1.79, Electron. J. Qual. Theory Differ. Equ. 2015 (2015), Article ID 79, 15 pages. (2015) Zbl1349.34051MR3425546DOI10.14232/ejqtde.2015.1.79
- Satco, B., Smyrlis, G., 10.3390/math8122142, Mathematics 8 (2020), Article ID 2142, 23 pages. (2020) MR4161917DOI10.3390/math8122142
- Satco, B., Smyrlis, G., 10.1007/s11784-020-00825-1, J. Fixed Point Theory Appl. 22 (2020), Article ID 94, 23 pages. (2020) Zbl1464.34008MR4161917DOI10.1007/s11784-020-00825-1
- Schwabik, Š., 10.1142/1875, Series in Real Analysis 5. World Scientific, Singapore (1992). (1992) Zbl0781.34003MR1200241DOI10.1142/1875
- Tvrdý, M., Differential and integral equations in the space of regulated functions, Mem. Differ. Equ. Math. Phys. 25 (2002), 1-104. (2002) Zbl1081.34504MR1903190
- Young, W. H., 10.1112/plms/s2-15.1.35, Proc. Lond. Math. Soc. (2) 15 (1916), 35-63 9999JFM99999 46.0386.01. (1916) MR1576571DOI10.1112/plms/s2-15.1.35
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.