A Komlós-type theorem for the set-valued Henstock-Kurzweil-Pettis integral and applications

Bianca Satco

Czechoslovak Mathematical Journal (2006)

  • Volume: 56, Issue: 3, page 1029-1047
  • ISSN: 0011-4642

Abstract

top
This paper presents a Komlós theorem that extends to the case of the set-valued Henstock-Kurzweil-Pettis integral a result obtained by Balder and Hess (in the integrably bounded case) and also a result of Hess and Ziat (in the Pettis integrability setting). As applications, a solution to a best approximation problem is given, weak compactness results are deduced and, finally, an existence theorem for an integral inclusion involving the Henstock-Kurzweil-Pettis set-valued integral is obtained.

How to cite

top

Satco, Bianca. "A Komlós-type theorem for the set-valued Henstock-Kurzweil-Pettis integral and applications." Czechoslovak Mathematical Journal 56.3 (2006): 1029-1047. <http://eudml.org/doc/31089>.

@article{Satco2006,
abstract = {This paper presents a Komlós theorem that extends to the case of the set-valued Henstock-Kurzweil-Pettis integral a result obtained by Balder and Hess (in the integrably bounded case) and also a result of Hess and Ziat (in the Pettis integrability setting). As applications, a solution to a best approximation problem is given, weak compactness results are deduced and, finally, an existence theorem for an integral inclusion involving the Henstock-Kurzweil-Pettis set-valued integral is obtained.},
author = {Satco, Bianca},
journal = {Czechoslovak Mathematical Journal},
keywords = {Komlós convergence; Henstock-Kurzweil integral; Henstock-Kurzweil-Pettis set-valued integral; selection; Komlós convergence},
language = {eng},
number = {3},
pages = {1029-1047},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A Komlós-type theorem for the set-valued Henstock-Kurzweil-Pettis integral and applications},
url = {http://eudml.org/doc/31089},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Satco, Bianca
TI - A Komlós-type theorem for the set-valued Henstock-Kurzweil-Pettis integral and applications
JO - Czechoslovak Mathematical Journal
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 3
SP - 1029
EP - 1047
AB - This paper presents a Komlós theorem that extends to the case of the set-valued Henstock-Kurzweil-Pettis integral a result obtained by Balder and Hess (in the integrably bounded case) and also a result of Hess and Ziat (in the Pettis integrability setting). As applications, a solution to a best approximation problem is given, weak compactness results are deduced and, finally, an existence theorem for an integral inclusion involving the Henstock-Kurzweil-Pettis set-valued integral is obtained.
LA - eng
KW - Komlós convergence; Henstock-Kurzweil integral; Henstock-Kurzweil-Pettis set-valued integral; selection; Komlós convergence
UR - http://eudml.org/doc/31089
ER -

References

top
  1. 10.1016/0022-247X(90)90237-A, J.  Math. Anal. Appl. 151 (1990), 1–16. (1990) Zbl0733.46015MR1069442DOI10.1016/0022-247X(90)90237-A
  2. Two generalizations of Komlós theorem with lower closure-type applications, J.  Convex Anal. 3 (1996), 25–44. (1996) MR1422749
  3. 10.4064/ba52-1-6, Bull. Pol. Acad. Sci. Math. 52 (2004), 53–61. (2004) MR2070028DOI10.4064/ba52-1-6
  4. Weak compactness and convergences in Bochner and Pettis integration, Vietnam J.  Math. 24 (1996), 241–286. (1996) MR2010821
  5. 10.1007/BF01776856, Ann. Mat. Pura Appl. 140 (1985), 345–364. (1985) MR0807644DOI10.1007/BF01776856
  6. 10.1007/BFb0087688, Lect. Notes Math. Vol.  580, Springer-Verlag, Berlin, 1977. (1977) MR0467310DOI10.1007/BFb0087688
  7. On x ' = f ( t , x ) and Henstock-Kurzweil integrals, Differential Integral Equations 4 (1991), 861–868. (1991) MR1108065
  8. 10.1023/B:CMAJ.0000042368.51882.ab, Czechoslovak Math.  J. 54 (2004), 279–289. (2004) MR2059250DOI10.1023/B:CMAJ.0000042368.51882.ab
  9. 10.1023/A:1026547222209, Set-Valued Analysis 8 (2000), 329–360. (2000) MR1802239DOI10.1023/A:1026547222209
  10. Linear integral equations of Volterra concerning Henstock integrals, Real Anal. Exchange 25 (1999/00), 389–417. (1999/00) MR1758896
  11. Impulsive retarded differential equations in Banach spaces via Bochner-Lebesgue and Henstock integrals, Nonlinear Anal. Ser.  A: Theory Methods 50 (2002), 389–407. (2002) MR1906469
  12. On Denjoy-Dunford and Denjoy-Pettis integrals, Studia Math. 130 (1998), 115–133. (1998) MR1623348
  13. 10.4064/sm-92-1-73-91, Studia Math. 92 (1989), 73–91. (1989) Zbl0681.28006MR0984851DOI10.4064/sm-92-1-73-91
  14. 10.1090/gsm/004/09, Grad. Stud. Math. Vol  4, AMS, Providence, 1994. (1994) Zbl0807.26004MR1288751DOI10.1090/gsm/004/09
  15. 10.1016/0047-259X(91)90012-Q, J.  Multivariate Anal. 39 (1991), 175–201. (1991) Zbl0746.60051MR1128679DOI10.1016/0047-259X(91)90012-Q
  16. Théorème de Komlós pour des multifonctions intégrables au sens de Pettis et applications, Ann. Sci. Math. Québec 26 (2002), 181–198. (2002) MR1980843
  17. 10.1007/BF02020976, Acta Math. Acad. Sci. Hungar. 18 (1967), 217–229. (1967) MR0210177DOI10.1007/BF02020976
  18. Topics in the theory of Pettis integration. In: School of Measure theory and Real Analysis, Grado, Italy, May  1992, Rend. Ist. Mat. Univ. Trieste 23 (1991), 177–262. (1991) MR1248654
  19. 10.1007/s11228-004-0934-0, Set-Valued Analysis 13 (2005), 167–179. (2005) MR2148134DOI10.1007/s11228-004-0934-0
  20. The Perron integral in ordinary differential equations, Differential Integral Equations 6 (1993), 863–882. (1993) Zbl0784.34006MR1222306

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.