Symmetric interior penalty discontinuous Galerkin method for nonlinear fully coupled quasi-static thermo-poroelasticity problems

Fan Chen; Ming Cui; Chenguang Zhou

Applications of Mathematics (2025)

  • Issue: 1, page 97-123
  • ISSN: 0862-7940

Abstract

top
We propose a symmetric interior penalty discontinuous Galerkin (DG) method for nonlinear fully coupled quasi-static thermo-poroelasticity problems. Firstly, a fully implicit nonlinear discrete scheme is constructed by adopting the DG method for the spatial approximation and the backward Euler method for the temporal discretization. Subsequently, the existence and uniqueness of the solution of the numerical scheme is proved, and then we derive the a priori error estimate for the three variables, i.e., the displacement, the pressure and the temperature. Lastly, we carry out numerical experiments to confirm the theoretical findings of our suggested approach.

How to cite

top

Chen, Fan, Cui, Ming, and Zhou, Chenguang. "Symmetric interior penalty discontinuous Galerkin method for nonlinear fully coupled quasi-static thermo-poroelasticity problems." Applications of Mathematics (2025): 97-123. <http://eudml.org/doc/299924>.

@article{Chen2025,
abstract = {We propose a symmetric interior penalty discontinuous Galerkin (DG) method for nonlinear fully coupled quasi-static thermo-poroelasticity problems. Firstly, a fully implicit nonlinear discrete scheme is constructed by adopting the DG method for the spatial approximation and the backward Euler method for the temporal discretization. Subsequently, the existence and uniqueness of the solution of the numerical scheme is proved, and then we derive the a priori error estimate for the three variables, i.e., the displacement, the pressure and the temperature. Lastly, we carry out numerical experiments to confirm the theoretical findings of our suggested approach.},
author = {Chen, Fan, Cui, Ming, Zhou, Chenguang},
journal = {Applications of Mathematics},
keywords = {thermo-poroelasticity; fully implicit nonlinear discrete scheme; symmetric interior penalty discontinuous Galerkin method; a priori error estimate},
language = {eng},
number = {1},
pages = {97-123},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Symmetric interior penalty discontinuous Galerkin method for nonlinear fully coupled quasi-static thermo-poroelasticity problems},
url = {http://eudml.org/doc/299924},
year = {2025},
}

TY - JOUR
AU - Chen, Fan
AU - Cui, Ming
AU - Zhou, Chenguang
TI - Symmetric interior penalty discontinuous Galerkin method for nonlinear fully coupled quasi-static thermo-poroelasticity problems
JO - Applications of Mathematics
PY - 2025
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 97
EP - 123
AB - We propose a symmetric interior penalty discontinuous Galerkin (DG) method for nonlinear fully coupled quasi-static thermo-poroelasticity problems. Firstly, a fully implicit nonlinear discrete scheme is constructed by adopting the DG method for the spatial approximation and the backward Euler method for the temporal discretization. Subsequently, the existence and uniqueness of the solution of the numerical scheme is proved, and then we derive the a priori error estimate for the three variables, i.e., the displacement, the pressure and the temperature. Lastly, we carry out numerical experiments to confirm the theoretical findings of our suggested approach.
LA - eng
KW - thermo-poroelasticity; fully implicit nonlinear discrete scheme; symmetric interior penalty discontinuous Galerkin method; a priori error estimate
UR - http://eudml.org/doc/299924
ER -

References

top
  1. Adams, R. A., Sobolev Spaces, Pure and Applied Mathematics 65. Academic Press, New York (1975). (1975) Zbl0314.46030MR0450957
  2. Antonietti, P. F., Bonetti, S., Botti, M., 10.1137/22M149874, SIAM J. Sci. Comput. 45 (2023), A621--A645. (2023) Zbl1529.65052MR4579739DOI10.1137/22M149874
  3. Arnold, D. N., 10.1137/0719052, SIAM J. Numer. Anal. 19 (1982), 742-760. (1982) Zbl0482.65060MR664882DOI10.1137/0719052
  4. Arnold, D. N., Brezzi, F., Cockburn, B., Marini, L. D., 10.1137/S0036142901384162, SIAM J. Numer. Anal. 39 (2002), 1749-1779. (2002) Zbl1008.65080MR1885715DOI10.1137/S0036142901384162
  5. al., S. Balay et, PETSc Users Manual, Technical Report ANL-95/11-Revision 3.14. Argonne National Laboratory, Lemont (2020). (2020) 
  6. Balay, S., Gropp, W. D., McInnes, L. C., Smith, B. F., 10.1007/978-1-4612-1986-6_8, Modern Software Tools in Scientific Computing Birkhäuser, Boston (1997), 163-202. (1997) Zbl0882.65154MR1452877DOI10.1007/978-1-4612-1986-6_8
  7. Balay, S., Gropp, W. D., McInnes, L. C., Smith, B. F., PETSc, Available at https://www.mcs.anl.gov/petsc (2019). (2019) 
  8. Biot, M. A., 10.1063/1.1721956, J. Appl. Phys. 26 (1955), 182-185. (1955) Zbl0067.23603MR0066874DOI10.1063/1.1721956
  9. Bociu, L., Guidoboni, G., Sacco, R., Webster, J. T., 10.1007/s00205-016-1024-9, Arch. Ration. Mech. Anal. 222 (2016), 1445-1519. (2016) Zbl1361.35139MR3544331DOI10.1007/s00205-016-1024-9
  10. Brun, M. K., Ahmed, E., Berre, I., Nordbottem, J. M., Radu, F. A., 10.1016/j.camwa.2020.08.022, Comput. Math. Appl. 80 (2020), 1964-1984. (2020) Zbl1451.74204MR4146798DOI10.1016/j.camwa.2020.08.022
  11. Brun, M. K., Ahmed, E., Nordbottem, J. M., Radu, F. A., 10.1016/j.jmaa.2018.10.074, J. Math. Anal. Appl. 471 (2019), 239-266. (2019) Zbl1457.74055MR3906323DOI10.1016/j.jmaa.2018.10.074
  12. Brun, M. K., Berre, I., Nordbottem, J. M., Radu, F. A., 10.1007/s11242-018-1056-8, Transp. Porous Media 124 (2018), 137-158. (2018) MR3825656DOI10.1007/s11242-018-1056-8
  13. J. Douglas, Jr., T. Dupont, 10.1007/BFb0120591, Computing Methods in Applied Sciences Lecture Notes in Physics 58. Springer, Berlin (1976), 207-216. (1976) MR0440955DOI10.1007/BFb0120591
  14. J. Douglas, Jr., J. E. Roberts, 10.1090/S0025-5718-1983-0717695-3, Math. Comput. 41 (1983), 441-459. (1983) Zbl0537.76062MR717695DOI10.1090/S0025-5718-1983-0717695-3
  15. Girault, V., Rivière, B., 10.1137/070686081, SIAM J. Numer. Anal. 47 (2009), 2052-2089. (2009) Zbl1406.76082MR2519594DOI10.1137/070686081
  16. Girault, V., Rivière, B., Wheeler, M. F., 10.1090/S0025-5718-04-01652-7, Math. Comput. 74 (2005), 53-84. (2005) Zbl1057.35029MR2085402DOI10.1090/S0025-5718-04-01652-7
  17. Hansbo, P., Larson, M. G., 10.1016/S0045-7825(01)00358-9, Comput. Methods Appl. Mech. Eng. 191 (2002), 1895-1908. (2002) Zbl1098.74693MR1886000DOI10.1016/S0045-7825(01)00358-9
  18. Kaewjuea, W., Senjuntichai, T., Rajapakse, R. K. N. D., 10.3970/cmes.2014.101.207, CMES, Comput. Model. Eng. Sci. 101 (2014), 207-228. (2014) Zbl1356.74135MR3309373DOI10.3970/cmes.2014.101.207
  19. Masri, R., Shen, B., Rivière, B., 10.1051/m2an/2022095, ESAIM, Math. Model. Numer. Anal. 57 (2023), 585-620. (2023) Zbl1514.65135MR4565982DOI10.1051/m2an/2022095
  20. Oden, J. T., Baumann, I. Babuška C. E., 10.1006/jcph.1998.6032, J. Comput. Phys. 146 (1998), 491-519. (1998) Zbl0926.65109MR1654911DOI10.1006/jcph.1998.6032
  21. Ohm, M. R., Lee, H. Y., Shin, J. Y., 10.1016/j.jmaa.2005.07.027, J. Math. Anal. Appl. 315 (2006), 132-143. (2006) Zbl1094.65091MR2196535DOI10.1016/j.jmaa.2005.07.027
  22. Phillips, P. J., Wheeler, M. F., 10.1007/s10596-008-9082-1, Comput. Geosci. 12 (2008), 417-435. (2008) Zbl1155.74048MR2461315DOI10.1007/s10596-008-9082-1
  23. Rivière, B., 10.1137/1.9780898717440, Frontiers in Applied Mathematics 35. SIAM, Philadelphia (2008). (2008) Zbl1153.65112MR2431403DOI10.1137/1.9780898717440
  24. Smillie, A., Sobey, I., Molnar, Z., 10.1017/S0022112005005707, J. Fluid Mech. 539 (2005), 417-443. (2005) Zbl1076.74040MR2262053DOI10.1017/S0022112005005707
  25. Stewart, D. E., 10.1137/1.9781611970715, SIAM, Philadelphia (2011). (2011) Zbl1241.37003MR2857428DOI10.1137/1.9781611970715
  26. Sun, J., Shu, C.-W., Xing, Y., 10.1051/m2an/2022084, ESAIM, Math. Model. Numer. Anal. 57 (2023), 841-864. (2023) Zbl1529.65084MR4567994DOI10.1051/m2an/2022084
  27. Suvorov, A. P., Selvadurai, A. P. S., 10.1016/j.jmps.2010.07.016, J. Mech. Phys. Solids 58 (2010), 1461-1473. (2010) Zbl1200.74004MR2742019DOI10.1016/j.jmps.2010.07.016
  28. Terzaghi, K., Erdbaumechanik auf bodenphysikalischer Grundlage, Deuticke, Leipzig (1925), German 9999JFM99999 51.0655.07. (1925) 
  29. Weinstein, T., Bennethum, L. S., 10.1016/j.ijengsci.2006.08.001, Int. J. Eng. Sci. 44 (2006), 1408-1422. (2006) Zbl1213.74122MR2273503DOI10.1016/j.ijengsci.2006.08.001
  30. Wheeler, M. F., 10.1137/0710062, SIAM J. Numer. Anal. 10 (1973), 723-759. (1973) Zbl0232.35060MR0351124DOI10.1137/0710062
  31. Yang, J., Chen, Y., 10.1007/s11425-010-3128-2, Sci. China, Math. 53 (2010), 2679-2696. (2010) Zbl1273.76284MR2728271DOI10.1007/s11425-010-3128-2
  32. Yang, X., Zhao, W., Zhao, W., 10.1002/num.22958, Numer. Methods Partial Differ. Equations 39 (2023), 2073-2095. (2023) Zbl07776998MR4570537DOI10.1002/num.22958
  33. Zhang, J., Rui, H., 10.1016/j.camwa.2022.04.019, Comput. Math. Appl. 118 (2022), 95-109. (2022) Zbl1524.76481MR4432106DOI10.1016/j.camwa.2022.04.019
  34. Zhang, J., Rui, H., 10.1016/j.cam.2023.115672, J. Comput. Appl. Math. 441 (2024), Article ID 115672, 17 pages. (2024) Zbl1537.65143MR4668322DOI10.1016/j.cam.2023.115672
  35. Zhang, J., Xia, Y., Xu, Y., 10.1007/s10915-023-02174-w, J. Sci. Comput. 95 (2023), Article ID 48, 21 pages. (2023) Zbl07698922MR4565862DOI10.1007/s10915-023-02174-w

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.