The Clairaut's theorem on rotational surfaces in pseudo-Euclidean 4-space with index 2
Fatma Almaz; Mihriban A. Külahci
Commentationes Mathematicae Universitatis Carolinae (2024)
- Issue: 1, page 63-77
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topAlmaz, Fatma, and Külahci, Mihriban A.. "The Clairaut's theorem on rotational surfaces in pseudo-Euclidean 4-space with index 2." Commentationes Mathematicae Universitatis Carolinae (2024): 63-77. <http://eudml.org/doc/299950>.
@article{Almaz2024,
abstract = {Clairaut’s theorem is expressed on the surfaces of rotation in semi Euclidean 4-space. Moreover, the general equations of time-like geodesic curves are characterized according to the results of Clairaut's theorem on the hyperbolic surfaces of rotation and the elliptic surface of rotation, respectively.},
author = {Almaz, Fatma, Külahci, Mihriban A.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Clairaut's theorem; surfaces of rotation; pseudo-Euclidean 4-space; geodesic curve},
language = {eng},
number = {1},
pages = {63-77},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The Clairaut's theorem on rotational surfaces in pseudo-Euclidean 4-space with index 2},
url = {http://eudml.org/doc/299950},
year = {2024},
}
TY - JOUR
AU - Almaz, Fatma
AU - Külahci, Mihriban A.
TI - The Clairaut's theorem on rotational surfaces in pseudo-Euclidean 4-space with index 2
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2024
PB - Charles University in Prague, Faculty of Mathematics and Physics
IS - 1
SP - 63
EP - 77
AB - Clairaut’s theorem is expressed on the surfaces of rotation in semi Euclidean 4-space. Moreover, the general equations of time-like geodesic curves are characterized according to the results of Clairaut's theorem on the hyperbolic surfaces of rotation and the elliptic surface of rotation, respectively.
LA - eng
KW - Clairaut's theorem; surfaces of rotation; pseudo-Euclidean 4-space; geodesic curve
UR - http://eudml.org/doc/299950
ER -
References
top- Almaz F., Külahcı M. A., 10.31559/glm2018.5.2.3, General Letters in Mathematics 5 (2018), no. 2, 84–92. DOI10.31559/glm2018.5.2.3
- Almaz F., Külahcı M. A., A different interpretation on magnetic surfaces generated by special magnetic curve in , Adiyaman University Journal of Science 10 (2020), no. 2, 524–547.
- Almaz F., Külahcı M. A., 10.1142/S0219887821500171, Int. J. Geom. Methods Mod. Phys. 18 (2021), no. 2, Paper No. 2150017, 15 pages. MR4209930DOI10.1142/S0219887821500171
- Almaz F., Külahcı M. A., A survey on tube surfaces in Galilean -space, Journal of Polytechnic 25 (2022), no. 3, 1133–1142.
- Almaz F., Külahcı M. A., The research on rotational surfaces in pseudo Euclidean -space with index , Acta Math. Univ. Comenian. (N.S.) 92 (2023), no. 3, 263–279. MR4650249
- Arnol'd V. I., 10.1007/978-1-4757-2063-1, Graduate Texts in Mathematics, 60, Springer, New York, 1989. MR0997295DOI10.1007/978-1-4757-2063-1
- Ganchev G., Milousheva V., 10.3906/mat-1312-10, Turkish. J. Math. 38 (2014), no. 5, 883–895. MR3225667DOI10.3906/mat-1312-10
- Goemans W., 10.2298/PIM1817061G, Publ. Inst. Math. (Beograd) (N.S.) 103 (117) (2018), 61–68. MR3812047DOI10.2298/PIM1817061G
- Hoffmann C. M., Zhou J., Visualization of surfaces in four-dimensional space, Purdue University, Department of Computer Science Technical Reports (1990), Paper 814, 37 pages.
- Lerner D., Lie Derivatives, Isometries, and Killing Vectors, Lawrence, Kansas, Department of Mathematics, Univ. of Cansas, 2010.
- Lugo G., Differential Geometry in Physics, University of North Carolina Wilmington, UNCW, 2021.
- Montiel S., Ros A., 10.1090/gsm/069, Graduate Studies in Mathematics, 69, American Mathematical Society, Providence; Real Sociedad Matemática Española, Madrid, 2009. MR2522595DOI10.1090/gsm/069
- Pressley A., Elementary Differential Geometry, Springer Undergraduate Mathematics Series, Springer, London, 2010. MR2598317
- Shifrin T., Differential Geometry: A First Course in Curves and Surfaces, Preliminary version, University of Georgia, 2011. MR0726220
- Yaglom I. M., A Simple Non-Euclidean Geometry and Its Physical Basis, Heidelberg Science Library, Springer, New York, 1979. MR0520230
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.