Displaying similar documents to “The Clairaut's theorem on rotational surfaces in pseudo-Euclidean 4-space with index 2”

Space-like Weingarten surfaces in the three-dimensional Minkowski space and their natural partial differential equations

Georgi Ganchev, Vesselka Mihova (2013)

Open Mathematics

Similarity:

On any space-like Weingarten surface in the three-dimensional Minkowski space we introduce locally natural principal parameters and prove that such a surface is determined uniquely up to motion by a special invariant function, which satisfies a natural non-linear partial differential equation. This result can be interpreted as a solution to the Lund-Regge reduction problem for space-like Weingarten surfaces in Minkowski space. We apply this theory to linear fractional space-like Weingarten...

Mazes on surfaces

Izidor Hafner, Tomislav Zitko (2003)

Visual Mathematics

Similarity:

Two remarks about surfaces

Wilczyński, Władysław, Rzepecka, Genowefa (2015-11-26T16:01:41Z)

Acta Universitatis Lodziensis. Folia Mathematica

Similarity:

From non-Kählerian surfaces to Cremona group of P 2 (C)

Georges Dloussky (2014)

Complex Manifolds

Similarity:

For any minimal compact complex surface S with n = b2(S) > 0 containing global spherical shells (GSS) we study the effectiveness of the 2n parameters given by the n blown up points. There exists a family of surfaces S → B with GSS which contains as fibers S, some Inoue-Hirzebruch surface and non minimal surfaces, such that blown up points are generically effective parameters. These families are versal outside a non empty hypersurface T ⊂ B. We deduce that, for any configuration of...

Legendrian dual surfaces in hyperbolic 3-space

Kentaro Saji, Handan Yıldırım (2015)

Annales Polonici Mathematici

Similarity:

We consider surfaces in hyperbolic 3-space and their duals. We study flat dual surfaces in hyperbolic 3-space by using extended Legendrian dualities between pseudo-hyperspheres in Lorentz-Minkowski 4-space. We define the flatness of a surface in hyperbolic 3-space by the degeneracy of its dual, which is similar to the case of the Gauss map of a surface in Euclidean 3-space. Such surfaces are a kind of ruled surfaces. Moreover, we investigate the singularities of these surfaces and the...

Riemann surfaces with boundary and natural triangulations of the Teichmüller space

Gabriele Mondello (2011)

Journal of the European Mathematical Society

Similarity:

We compare some natural triangulations of the Teichmüller space of hyperbolic surfaces with geodesic boundary and of some bordifications. We adapt Scannell–Wolf’s proof to show that grafting semi-infinite cylinders at the ends of hyperbolic surfaces with fixed boundary lengths is a homeomorphism. This way, we construct a family of equivariant triangulations of the Teichmüller space of punctured surfaces that interpolates between Bowditch–Epstein–Penner’s (using the spine construction)...

Quasi-minimal rotational surfaces in pseudo-Euclidean four-dimensional space

Georgi Ganchev, Velichka Milousheva (2014)

Open Mathematics

Similarity:

In the four-dimensional pseudo-Euclidean space with neutral metric there are three types of rotational surfaces with two-dimensional axis - rotational surfaces of elliptic, hyperbolic or parabolic type. A surface whose mean curvature vector field is lightlike is said to be quasi-minimal. In this paper we classify all rotational quasi-minimal surfaces of elliptic, hyperbolic and parabolic type, respectively.

Around real Enriques surfaces.

Alexander Degtyarev, Vlatcheslav Kharlamov (1997)

Revista Matemática de la Universidad Complutense de Madrid

Similarity:

We present a brief overview of the classification of real Enriques surfaces completed recently and make an attempt to systemize the known classification results for other special types of surfaces. Emphasis is also given to the particular tools used and to the general phenomena discovered; in particular, we prove two new congruence type prohibitions on the Euler characteristic of the real part of a real algebraic surface.

Rotation surfaces with L₁-pointwise 1-type Gauss map in pseudo-Galilean space

Dae Won Yoon, Young Ho Kim, Jae Seong Jung (2015)

Annales Polonici Mathematici

Similarity:

We study rotation surfaces in the three-dimensional pseudo-Galilean space G₃¹ such that the Gauss map G satisfies the condition L₁G = f(G + C) for a smooth function f and a constant vector C, where L₁ is the Cheng-Yau operator.

Lorentzian isothermic surfaces and Bonnet pairs

M. A. Magid (2004)

Annales Polonici Mathematici

Similarity:

Lorentzian surfaces in Lorentz three-space are studied using an indefinite version of the quaternions. A classification theorem for Bonnet pairs in Lorentz three-space is obtained.

Geodesies on typical convex surfaces

Peter Manfred Gruber (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

Using Baire categories uniqueness of geodesic segments and existence of closed geodesics on typical convex surfaces are investigated.