On the existence of nontrivial solutions for modified fractional Schrödinger-Poisson systems via perturbation method
Atefe Goli; Sayyed Hashem Rasouli; Somayeh Khademloo
Applications of Mathematics (2025)
- Issue: 2, page 293-310
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topGoli, Atefe, Rasouli, Sayyed Hashem, and Khademloo, Somayeh. "On the existence of nontrivial solutions for modified fractional Schrödinger-Poisson systems via perturbation method." Applications of Mathematics (2025): 293-310. <http://eudml.org/doc/299978>.
@article{Goli2025,
abstract = {The existence of nontrivial solutions is considered for the fractional Schrödinger-Poisson system with double quasi-linear terms: \[ \{\left\lbrace \begin\{array\}\{ll\} (-\Delta )^\{s\}u+V(x)u+\phi u -\{1\over 2\}u (-\Delta )^\{s\}u^\{2\}=f(x,u), & x\in \mathbb \{R\}^\{3\} ,\\ (-\Delta )^\{t\} \phi = u^\{2\}, & x\in \mathbb \{R\}^\{3\}, \end\{array\}\right.\} \]
where $(-\Delta )^\{\alpha \}$ is the fractional Laplacian for $\alpha =s$, $t\in (0,1]$ with $s<t$ and $2t+4s>3$. Under assumptions on $V$ and $f$, we prove the existence of positive solutions and negative solutions for the above system by using perturbation method and the mountain pass theorem.},
author = {Goli, Atefe, Rasouli, Sayyed Hashem, Khademloo, Somayeh},
journal = {Applications of Mathematics},
keywords = {fractional-Schrödinger-Poisson; quasi-linear term; perturbation method; variational method},
language = {eng},
number = {2},
pages = {293-310},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the existence of nontrivial solutions for modified fractional Schrödinger-Poisson systems via perturbation method},
url = {http://eudml.org/doc/299978},
year = {2025},
}
TY - JOUR
AU - Goli, Atefe
AU - Rasouli, Sayyed Hashem
AU - Khademloo, Somayeh
TI - On the existence of nontrivial solutions for modified fractional Schrödinger-Poisson systems via perturbation method
JO - Applications of Mathematics
PY - 2025
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 2
SP - 293
EP - 310
AB - The existence of nontrivial solutions is considered for the fractional Schrödinger-Poisson system with double quasi-linear terms: \[ {\left\lbrace \begin{array}{ll} (-\Delta )^{s}u+V(x)u+\phi u -{1\over 2}u (-\Delta )^{s}u^{2}=f(x,u), & x\in \mathbb {R}^{3} ,\\ (-\Delta )^{t} \phi = u^{2}, & x\in \mathbb {R}^{3}, \end{array}\right.} \]
where $(-\Delta )^{\alpha }$ is the fractional Laplacian for $\alpha =s$, $t\in (0,1]$ with $s<t$ and $2t+4s>3$. Under assumptions on $V$ and $f$, we prove the existence of positive solutions and negative solutions for the above system by using perturbation method and the mountain pass theorem.
LA - eng
KW - fractional-Schrödinger-Poisson; quasi-linear term; perturbation method; variational method
UR - http://eudml.org/doc/299978
ER -
References
top- Bartsch, T., Wang, Z.-Q., 10.1080/03605309508821149, Commun. Partial Differ. Equations 20 (1995), 1725-1741. (1995) Zbl0837.35043MR1349229DOI10.1080/03605309508821149
- Benci, V., Fortunato, D., 10.12775/TMNA.1998.019, Topol. Methods Nonlinear Anal. 11 (1998), 283-293. (1998) Zbl0926.35125MR1659454DOI10.12775/TMNA.1998.019
- Caffarelli, L. A., Roquejoffre, J.-M., Sire, Y., 10.4171/JEMS/226, J. Eur. Math. Soc. (JEMS) 12 (2010), 1151-1179. (2010) Zbl1221.35453MR2677613DOI10.4171/JEMS/226
- Caffarelli, L. A., Salsa, S., Silvestre, L., 10.1007/s00222-007-0086-6, Invent. Math. 171 (2008), 425-461. (2008) Zbl1148.35097MR2367025DOI10.1007/s00222-007-0086-6
- Caffarelli, L. A., Valdinoci, E., 10.1007/s00526-010-0359-6, Calc. Var. Partial Differ. Equ. 41 (2011), 203-240. (2011) Zbl1357.49143MR2782803DOI10.1007/s00526-010-0359-6
- Costa, D. G., On a class of elliptic systems in , Electron. J. Differ. Equ. 1994 (1994), Article ID 7, 14 pages. (1994) Zbl0809.35020MR1292598
- Cotsiolis, A., Tavoularis, N. K., 10.1016/S1631-073X(02)02576-1, C. R., Math., Acad. Sci. Paris 335 (2002), 801-804. (2002) Zbl1032.26010MR1947703DOI10.1016/S1631-073X(02)02576-1
- D'Aprile, T., Mugnai, D., 10.1017/S030821050000353X, Proc. R. Soc. Edinb., Sect. A, Math. 134 (2004), 893-906. (2004) Zbl1064.35182MR2099569DOI10.1017/S030821050000353X
- D'Avenia, P., Siciliano, G., Squassina, M., 10.1142/S0218202515500384, Math. Models Methods Appl. Sci. 25 (2015), 1447-1476. (2015) Zbl1323.35205MR3340706DOI10.1142/S0218202515500384
- Nezza, E. Di, Palatucci, G., Valdinoci, E., 10.1016/j.bulsci.2011.12.004, Bull. Sci. Math. 136 (2012), 521-573. (2012) Zbl1252.46023MR2944369DOI10.1016/j.bulsci.2011.12.004
- Laskin, N., 10.1016/S0375-9601(00)00201-2, Phys. Lett. A 268 (2000), 298-305. (2000) Zbl0948.81595MR1755089DOI10.1016/S0375-9601(00)00201-2
- Liu, X.-Q., Liu, J.-Q., Wang, Z.-Q., 10.1090/S0002-9939-2012-11293-6, Proc. Am. Math. Soc. 141 (2013), 253-263. (2013) Zbl1267.35096MR2988727DOI10.1090/S0002-9939-2012-11293-6
- Nie, J., Wu, X., 10.1016/j.jmaa.2013.06.011, J. Math. Anal. Appl. 408 (2013), 713-724. (2013) Zbl1308.81082MR3085065DOI10.1016/j.jmaa.2013.06.011
- Peng, X., Jia, G., 10.3934/dcdsb.2021134, Discrete Contin. Dyn. Syst., Ser. B 27 (2022), 2325-2344. (2022) Zbl1486.35209MR4399151DOI10.3934/dcdsb.2021134
- Ruiz, D., 10.1016/j.jfa.2006.04.005, J. Funct. Anal. 237 (2006), 655-674. (2006) Zbl1136.35037MR2230354DOI10.1016/j.jfa.2006.04.005
- Salvatore, A., 10.1515/ans-2006-0203, Adv. Nonlinear Stud. 6 (2006), 157-169. (2006) Zbl1229.35065MR2219833DOI10.1515/ans-2006-0203
- Stein, E. M., 10.1515/9781400883882, Princeton Mathematical Series 30. Princeton University Press, Princeton (1970). (1970) Zbl0207.13501MR0290095DOI10.1515/9781400883882
- Teng, K., 10.1016/j.nonrwa.2014.06.008, Nonlinear Anal., Real World Appl. 21 (2015), 76-86. (2015) Zbl1302.35415MR3261580DOI10.1016/j.nonrwa.2014.06.008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.