Optimality conditions for an interval-valued vector problem
Ashish Kumar Prasad; Julie Khatri; Izhar Ahmad
Kybernetika (2025)
- Issue: 2, page 221-237
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topPrasad, Ashish Kumar, Khatri, Julie, and Ahmad, Izhar. "Optimality conditions for an interval-valued vector problem." Kybernetika (2025): 221-237. <http://eudml.org/doc/299984>.
@article{Prasad2025,
abstract = {The present article considers a nonsmooth interval-valued vector optimization problem with inequality constraints. We first figure out Fritz John and Karush-Kuhn-Tucker type necessary optimality conditions for the interval-valued problem designed in the paper under quasidifferentiable $\mathfrak \{F\}$-convexity in connection with compact convex sets. Subsequently, sufficient optimality conditions are extrapolated under aforesaid quasidifferentiability supported by a suitable numerical example.},
author = {Prasad, Ashish Kumar, Khatri, Julie, Ahmad, Izhar},
journal = {Kybernetika},
keywords = {interval-valued vector optimization problem; quasidifferentiable $\mathfrak \{F\}$-convexity; LU-Pareto optimality},
language = {eng},
number = {2},
pages = {221-237},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Optimality conditions for an interval-valued vector problem},
url = {http://eudml.org/doc/299984},
year = {2025},
}
TY - JOUR
AU - Prasad, Ashish Kumar
AU - Khatri, Julie
AU - Ahmad, Izhar
TI - Optimality conditions for an interval-valued vector problem
JO - Kybernetika
PY - 2025
PB - Institute of Information Theory and Automation AS CR
IS - 2
SP - 221
EP - 237
AB - The present article considers a nonsmooth interval-valued vector optimization problem with inequality constraints. We first figure out Fritz John and Karush-Kuhn-Tucker type necessary optimality conditions for the interval-valued problem designed in the paper under quasidifferentiable $\mathfrak {F}$-convexity in connection with compact convex sets. Subsequently, sufficient optimality conditions are extrapolated under aforesaid quasidifferentiability supported by a suitable numerical example.
LA - eng
KW - interval-valued vector optimization problem; quasidifferentiable $\mathfrak {F}$-convexity; LU-Pareto optimality
UR - http://eudml.org/doc/299984
ER -
References
top- Antczak, T., , J. Optim. Theory Appl. 171 (2016), 708-725. MR3557446DOI
- Antczak, T., , Acta Math. Scientia 37 (2017), 1133-1150. MR3657212DOI
- Bhatia, D., Jain, P., , Optimization 31 (1994), 239-244. DOI
- Bhurjee, A. K., Panda, G., , Math. Methods Oper. Res. 76 (2012), 273-288. MR3000987DOI
- Bolintinéanu, S., , J. Optim. Theory Appl. 106 (2000), 265-296. MR1788925DOI
- Brandao, A. J. V., Rojas-Medar, M. A., Silva, G. N., 10.1023/A:1021769232224, J. Optim. Theory Appl. 103 (1999), 65-73. MR1715008DOI10.1023/A:1021769232224
- Chankong, V., Haimes, Y., Multiobjective Decision Making: Theory and Methodology., North-Holland, New York 1983. MR0780745
- Chinchuluun, A., Pardalos, P. M., , Ann. Oper. Res. 154 (2007), 29-50. MR2332820DOI
- Clarke, F. H., Optimization and Nonsmooth Analysis., Wiley, New York 1983. MR0709590
- Coladas, L., Li, Z., Wang, S., , Bull. Austral. Math. Soc. 50 (1994), 205-218. MR1296749DOI
- Craven, B. D., 10.1080/01630568908816290, Numer. Funct. Anal. Optim. 10 (1989), 49-64. MR0978802DOI10.1080/01630568908816290
- Demyanov, V. F., Rubinov, A. M., On quasidifferentiable functional., Dokl. Akad. Nauk SSSR 250 (1980), 21-25 (translated in Soviet Mathematics Doklady 21 (1980), 14-17.) MR0556111
- Demyanov, V. F., Rubinov, A. M., On some approaches to the non-smooth optimization problem., Ekonom. Matem. Metody 17 (1981), 1153-1174. MR0653043
- Abdouni, B. El., Thibault, L., , Optimization 26 (1992), 277-285. MR1236612DOI
- Eppler, K., Luderer, B., The Lagrange principle and quasidifferential calculus., Wissenschaftliche Zeitschrift der Technischen Hochschule Karl-Marx-Stadt 29 (1987), 187-192. MR0909080
- Gao, Y., , J. Optim. Theory Appl. 104 (2000), 377-394. MR1752323DOI
- Gao, Y., Optimality conditions with Lagrange multipliers for inequality constrained quasidifferentiable optimization., In: Quasidifferentiability and Related Topics (V. Demyanov and A. Rubinov, eds.), Kluwer Academic Publishers 2000, pp. 151-162. MR1766796
- Huang, N. J., Li, J., Wu, S. Y., , J. Optim. Theory Appl. 142 (2009), 323-342. MR2525793DOI
- Jayswal, A., Stancu-Minasian, I. M., Ahmad, I., , Appl. Math. Comput. 218 (2011), 4119-4127. MR2862082DOI
- Jeyakumar, V., Yang, X. Q., , Math. Program. 59 (1993), 325-343. MR1226821DOI
- Kanniappan, P., , J. Optim. Theory Appl. 40 (1983), 167-174. MR0703314DOI
- Kuntz, L., Scholtes, S., , Math. Program. 60 (1993), 339-347. MR1234879DOI
- Luc, D. T., 10.1007/978-3-642-50280-4_3, Lect. Notes Econom. Math. Systems 319 Springer, Berlin 1989. Zbl0654.90082MR1116766DOI10.1007/978-3-642-50280-4_3
- Luderer, B., Rösiger, R., , Math. Program. 46 (1990), 403-407. MR1054147DOI
- Miettinen, K. M., Nonlinear Multiobjective Optimization., International Series in Operations Research and Management Science 12, Kluwer Academic Publishers, Boston 2004. MR1784937
- Minami, M., , J. Optim. Theory Appl. 41 (1983), 451-461. MR0728312DOI
- Polyakova, L. N., , Math. Program. Studies 29 (1986), 44-55. MR0837885DOI
- Shapiro, A., , SIAM Control Appl. 22 (1984), 610-617. MR0747972DOI
- Sun, Y., Wang, L., 10.3934/jimo.2013.9.131, J. Industr. Management Optim. 9 (2013), 131-142. MR3003020DOI10.3934/jimo.2013.9.131
- Uderzo, A., , Optimization 51 (2002), 761-795. MR1941714DOI
- Wang, S., Lagrange conditions in nonsmooth and multiobjective mathematical programming., Math. Econom. 1 (1984), 183-193.
- Ward, D. E., , Optimization 22 (1991), 661-668. MR1120494DOI
- Wu, H. C., , European J. Oper. Res. 176 (2007), 46-59. MR2265133DOI
- Xia, Z. Q., Song, C. L., Zhang, L. W., On Fritz John and KKT necessary conditions of constrained quasidifferentiable optimization., Int. J. Pure Appl. Math. 23 (2005), 299-310. MR2176203
- Zhang, J., Liu, S., Li, L., Feng, Q., 10.1007/s11590-012-0601-6, Optim. Lett. 8 (2014), 607-631. MR3163292DOI10.1007/s11590-012-0601-6
- Zhou, H. C., Wang, Y. J., Optimality condition and mixed duality for interval-valued optimization., In: Fuzzy Information and Engineering, Vol. 2, Advances in Intelligent and Soft Computing 62, Proc. Third International Conference on Fuzzy Information and Engineering (ICFIE 2009), Springer 2009, pp. 1315-1323. MR2461173
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.