Optimality conditions for an interval-valued vector problem

Ashish Kumar Prasad; Julie Khatri; Izhar Ahmad

Kybernetika (2025)

  • Issue: 2, page 221-237
  • ISSN: 0023-5954

Abstract

top
The present article considers a nonsmooth interval-valued vector optimization problem with inequality constraints. We first figure out Fritz John and Karush-Kuhn-Tucker type necessary optimality conditions for the interval-valued problem designed in the paper under quasidifferentiable 𝔉 -convexity in connection with compact convex sets. Subsequently, sufficient optimality conditions are extrapolated under aforesaid quasidifferentiability supported by a suitable numerical example.

How to cite

top

Prasad, Ashish Kumar, Khatri, Julie, and Ahmad, Izhar. "Optimality conditions for an interval-valued vector problem." Kybernetika (2025): 221-237. <http://eudml.org/doc/299984>.

@article{Prasad2025,
abstract = {The present article considers a nonsmooth interval-valued vector optimization problem with inequality constraints. We first figure out Fritz John and Karush-Kuhn-Tucker type necessary optimality conditions for the interval-valued problem designed in the paper under quasidifferentiable $\mathfrak \{F\}$-convexity in connection with compact convex sets. Subsequently, sufficient optimality conditions are extrapolated under aforesaid quasidifferentiability supported by a suitable numerical example.},
author = {Prasad, Ashish Kumar, Khatri, Julie, Ahmad, Izhar},
journal = {Kybernetika},
keywords = {interval-valued vector optimization problem; quasidifferentiable $\mathfrak \{F\}$-convexity; LU-Pareto optimality},
language = {eng},
number = {2},
pages = {221-237},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Optimality conditions for an interval-valued vector problem},
url = {http://eudml.org/doc/299984},
year = {2025},
}

TY - JOUR
AU - Prasad, Ashish Kumar
AU - Khatri, Julie
AU - Ahmad, Izhar
TI - Optimality conditions for an interval-valued vector problem
JO - Kybernetika
PY - 2025
PB - Institute of Information Theory and Automation AS CR
IS - 2
SP - 221
EP - 237
AB - The present article considers a nonsmooth interval-valued vector optimization problem with inequality constraints. We first figure out Fritz John and Karush-Kuhn-Tucker type necessary optimality conditions for the interval-valued problem designed in the paper under quasidifferentiable $\mathfrak {F}$-convexity in connection with compact convex sets. Subsequently, sufficient optimality conditions are extrapolated under aforesaid quasidifferentiability supported by a suitable numerical example.
LA - eng
KW - interval-valued vector optimization problem; quasidifferentiable $\mathfrak {F}$-convexity; LU-Pareto optimality
UR - http://eudml.org/doc/299984
ER -

References

top
  1. Antczak, T., , J. Optim. Theory Appl. 171 (2016), 708-725. MR3557446DOI
  2. Antczak, T., , Acta Math. Scientia 37 (2017), 1133-1150. MR3657212DOI
  3. Bhatia, D., Jain, P., , Optimization 31 (1994), 239-244. DOI
  4. Bhurjee, A. K., Panda, G., , Math. Methods Oper. Res. 76 (2012), 273-288. MR3000987DOI
  5. Bolintinéanu, S., , J. Optim. Theory Appl. 106 (2000), 265-296. MR1788925DOI
  6. Brandao, A. J. V., Rojas-Medar, M. A., Silva, G. N., 10.1023/A:1021769232224, J. Optim. Theory Appl. 103 (1999), 65-73. MR1715008DOI10.1023/A:1021769232224
  7. Chankong, V., Haimes, Y., Multiobjective Decision Making: Theory and Methodology., North-Holland, New York 1983. MR0780745
  8. Chinchuluun, A., Pardalos, P. M., , Ann. Oper. Res. 154 (2007), 29-50. MR2332820DOI
  9. Clarke, F. H., Optimization and Nonsmooth Analysis., Wiley, New York 1983. MR0709590
  10. Coladas, L., Li, Z., Wang, S., , Bull. Austral. Math. Soc. 50 (1994), 205-218. MR1296749DOI
  11. Craven, B. D., 10.1080/01630568908816290, Numer. Funct. Anal. Optim. 10 (1989), 49-64. MR0978802DOI10.1080/01630568908816290
  12. Demyanov, V. F., Rubinov, A. M., On quasidifferentiable functional., Dokl. Akad. Nauk SSSR 250 (1980), 21-25 (translated in Soviet Mathematics Doklady 21 (1980), 14-17.) MR0556111
  13. Demyanov, V. F., Rubinov, A. M., On some approaches to the non-smooth optimization problem., Ekonom. Matem. Metody 17 (1981), 1153-1174. MR0653043
  14. Abdouni, B. El., Thibault, L., , Optimization 26 (1992), 277-285. MR1236612DOI
  15. Eppler, K., Luderer, B., The Lagrange principle and quasidifferential calculus., Wissenschaftliche Zeitschrift der Technischen Hochschule Karl-Marx-Stadt 29 (1987), 187-192. MR0909080
  16. Gao, Y., , J. Optim. Theory Appl. 104 (2000), 377-394. MR1752323DOI
  17. Gao, Y., Optimality conditions with Lagrange multipliers for inequality constrained quasidifferentiable optimization., In: Quasidifferentiability and Related Topics (V. Demyanov and A. Rubinov, eds.), Kluwer Academic Publishers 2000, pp. 151-162. MR1766796
  18. Huang, N. J., Li, J., Wu, S. Y., , J. Optim. Theory Appl. 142 (2009), 323-342. MR2525793DOI
  19. Jayswal, A., Stancu-Minasian, I. M., Ahmad, I., , Appl. Math. Comput. 218 (2011), 4119-4127. MR2862082DOI
  20. Jeyakumar, V., Yang, X. Q., , Math. Program. 59 (1993), 325-343. MR1226821DOI
  21. Kanniappan, P., , J. Optim. Theory Appl. 40 (1983), 167-174. MR0703314DOI
  22. Kuntz, L., Scholtes, S., , Math. Program. 60 (1993), 339-347. MR1234879DOI
  23. Luc, D. T., 10.1007/978-3-642-50280-4_3, Lect. Notes Econom. Math. Systems 319 Springer, Berlin 1989. Zbl0654.90082MR1116766DOI10.1007/978-3-642-50280-4_3
  24. Luderer, B., Rösiger, R., , Math. Program. 46 (1990), 403-407. MR1054147DOI
  25. Miettinen, K. M., Nonlinear Multiobjective Optimization., International Series in Operations Research and Management Science 12, Kluwer Academic Publishers, Boston 2004. MR1784937
  26. Minami, M., , J. Optim. Theory Appl. 41 (1983), 451-461. MR0728312DOI
  27. Polyakova, L. N., , Math. Program. Studies 29 (1986), 44-55. MR0837885DOI
  28. Shapiro, A., , SIAM Control Appl. 22 (1984), 610-617. MR0747972DOI
  29. Sun, Y., Wang, L., 10.3934/jimo.2013.9.131, J. Industr. Management Optim. 9 (2013), 131-142. MR3003020DOI10.3934/jimo.2013.9.131
  30. Uderzo, A., , Optimization 51 (2002), 761-795. MR1941714DOI
  31. Wang, S., Lagrange conditions in nonsmooth and multiobjective mathematical programming., Math. Econom. 1 (1984), 183-193. 
  32. Ward, D. E., , Optimization 22 (1991), 661-668. MR1120494DOI
  33. Wu, H. C., , European J. Oper. Res. 176 (2007), 46-59. MR2265133DOI
  34. Xia, Z. Q., Song, C. L., Zhang, L. W., On Fritz John and KKT necessary conditions of constrained quasidifferentiable optimization., Int. J. Pure Appl. Math. 23 (2005), 299-310. MR2176203
  35. Zhang, J., Liu, S., Li, L., Feng, Q., 10.1007/s11590-012-0601-6, Optim. Lett. 8 (2014), 607-631. MR3163292DOI10.1007/s11590-012-0601-6
  36. Zhou, H. C., Wang, Y. J., Optimality condition and mixed duality for interval-valued optimization., In: Fuzzy Information and Engineering, Vol. 2, Advances in Intelligent and Soft Computing 62, Proc. Third International Conference on Fuzzy Information and Engineering (ICFIE 2009), Springer 2009, pp. 1315-1323. MR2461173

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.