Characterizations of absolute F σ δ -sets

Heikki J. K. Junnila; Hans-Peter A. Künzi

Czechoslovak Mathematical Journal (1998)

  • Volume: 48, Issue: 1, page 55-64
  • ISSN: 0011-4642

How to cite

top

Junnila, Heikki J. K., and Künzi, Hans-Peter A.. "Characterizations of absolute $F_{\sigma \delta }$-sets." Czechoslovak Mathematical Journal 48.1 (1998): 55-64. <http://eudml.org/doc/30401>.

@article{Junnila1998,
author = {Junnila, Heikki J. K., Künzi, Hans-Peter A.},
journal = {Czechoslovak Mathematical Journal},
keywords = {metric space; $F_\{\sigma \delta \}$-set; bicomplete quasi-metric; complete sequence of covers; compact family of sets; cotopology; bicomplete quasi-metric; complete sequence of covers; compact family of sets; cotopology},
language = {eng},
number = {1},
pages = {55-64},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Characterizations of absolute $F_\{\sigma \delta \}$-sets},
url = {http://eudml.org/doc/30401},
volume = {48},
year = {1998},
}

TY - JOUR
AU - Junnila, Heikki J. K.
AU - Künzi, Hans-Peter A.
TI - Characterizations of absolute $F_{\sigma \delta }$-sets
JO - Czechoslovak Mathematical Journal
PY - 1998
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 48
IS - 1
SP - 55
EP - 64
LA - eng
KW - metric space; $F_{\sigma \delta }$-set; bicomplete quasi-metric; complete sequence of covers; compact family of sets; cotopology; bicomplete quasi-metric; complete sequence of covers; compact family of sets; cotopology
UR - http://eudml.org/doc/30401
ER -

References

top
  1. Cocompactness, Nieuw Arch. Wisk. 18 (1970), 2–15. (1970) MR0268851
  2. 10.1215/S0012-7094-70-03737-3, Duke Math. J. 37 (1970), 291–295. (1970) MR0259859DOI10.1215/S0012-7094-70-03737-3
  3. On topological spaces which are complete in the sense of Čech, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2 (1961), 37–40 (in Russian). (1961) MR0131258
  4. 10.1215/S0012-7094-47-01442-7, Duke Math. J. 14 (1947), 511–519. (1947) Zbl0030.08003MR0024609DOI10.1215/S0012-7094-47-01442-7
  5. 10.2307/1968839, Annals of Math. 38 (1937), 823–844. (1937) MR1503374DOI10.2307/1968839
  6. Extending a quasi-metric, Studia Sci. Math. Hung. 28 (1993), 105–113. (1993) MR1250800
  7. 10.1090/S0002-9939-1985-0792287-2, Proc. Amer. Math. Soc. 94 (1985), 703–710. (1985) MR0792287DOI10.1090/S0002-9939-1985-0792287-2
  8. Countable products of zero-dimensional absolute F σ δ spaces, Indag. Math. 46 (1984), 391–399. (1984) MR0770725
  9. General Topology, Heldermann, Berlin, 1989. (1989) Zbl0684.54001MR1039321
  10. 10.1017/S0305004100069644, Math. Proc. Camb. Phil. Soc. 109 (1991), 167–186. (1991) MR1075129DOI10.1017/S0305004100069644
  11. Quasi-uniform Spaces, Marcel Dekker, New York, 1982. (1982) MR0660063
  12. Generalizations of the G δ -property of complete metric spaces, Czech. Math. J. 10 (1960), 359–379. (1960) MR0116305
  13. On the descriptive theory of sets, Czech. Math. J. 13 (1963), 335–359. (1963) MR0162215
  14. 10.1090/S0002-9939-1971-0268853-X, Proc. Amer. Math. Soc. 27 (1971), 343–352. (1971) Zbl0212.55202MR0268853DOI10.1090/S0002-9939-1971-0268853-X
  15. Neighbornets, Pacific J. Math. 76 (1978), 83–108. (1978) Zbl0353.54016MR0482677
  16. On σ -spaces and pseudometrizable spaces, Topology Proceedings 4 (1979), 121–132. (1979) MR0583695
  17. On strongly zero-dimensional F σ -metrizable stratifiable spaces, In: Topology. General and Algebraic Topology, and Applications (Proc. Internat. Topological. Confer. Leningrad, 1982), L. D. Faddeev and A. A. Mal’cev (eds.), Lecture Notes in Math. 1060, Springer Verlag, Berlin, 1984, pp. 67–75. (1984) MR0770226
  18. 10.1007/BF01193823, Arch. Math. (Basel) 41 (1983), 57–63. (1983) DOI10.1007/BF01193823
  19. Topological spaces that admit bicomplete quasi-pseudometrics, Ann. Sci. Budapest 37 (1994), 185–195. (1994) MR1303429
  20. On bicomplete quasi-pseudometrizability, Top. Appl. 50 (1993), 283–289. (1993) MR1227555
  21. 10.4064/fm-6-1-24-29, Fund. Math. 6 (1924), 24–29. (1924) DOI10.4064/fm-6-1-24-29
  22. Borel and analytic metric spaces, Proc. Washington State Univ. Confer. on Gen. Topology, Pi Mu Epsilon. Washington Alpha Center, 1970, pp. 20–33. (1970) Zbl0199.25804MR0268848

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.