An algebraic characterization of geodetic graphs
Czechoslovak Mathematical Journal (1998)
- Volume: 48, Issue: 4, page 701-710
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topReferences
top- Graphs & Digraphs, Prindle, Weber & Schmidt, Boston, 1979. (1979) MR0525578
- Graph Theory, Addison-Wesley, Reading (Mass.), 1969. (1969) Zbl0196.27202MR0256911
- The Interval Function of a Graph, Mathematisch Centrum. Amsterdam, 1980. (1980) Zbl0446.05039MR0605838
- A characterization of the set of all shortest paths in a connected graph, Mathematica Bohemica 119 (1994), 15–20. (1994) MR1303548
- A characterization of geodetic graphs, Czechoslovak Math. Journal 45 (120) (1995), 491–493. (1995) MR1344515
- 10.1023/A:1022404624515, Czechoslovak Math. Journal 47 (122) (1997), 149–161. (1997) MR1435613DOI10.1023/A:1022404624515
Citations in EuDML Documents
top- Ladislav Nebeský, A tree as a finite nonempty set with a binary operation
- Ladislav Nebeský, New proof of a characterization of geodetic graphs
- Ladislav Nebeský, Travel groupoids
- Henry Martyn Mulder, Ladislav Nebeský, Leaps: an approach to the block structure of a graph
- Ladislav Nebeský, An axiomatic approach to metric properties of connected graphs
- Jung Rae Cho, Jeongmi Park, Yoshio Sano, Travel groupoids on infinite graphs
- Ladislav Nebeský, The interval function of a connected graph and a characterization of geodetic graphs