# End-faithful spanning trees of countable graphs with prescribed sets of rays

Czechoslovak Mathematical Journal (2001)

- Volume: 51, Issue: 1, page 45-53
- ISSN: 0011-4642

## Access Full Article

top## Abstract

top## How to cite

topPolat, Norbert. "End-faithful spanning trees of countable graphs with prescribed sets of rays." Czechoslovak Mathematical Journal 51.1 (2001): 45-53. <http://eudml.org/doc/30613>.

@article{Polat2001,

abstract = {We prove that a countable connected graph has an end-faithful spanning tree that contains a prescribed set of rays whenever this set is countable, and we show that this solution is, in a certain sense, the best possible. This improves a result of Hahn and Širáň Theorem 1.},

author = {Polat, Norbert},

journal = {Czechoslovak Mathematical Journal},

keywords = {countable graph; end-faithful graph; spanning trees},

language = {eng},

number = {1},

pages = {45-53},

publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},

title = {End-faithful spanning trees of countable graphs with prescribed sets of rays},

url = {http://eudml.org/doc/30613},

volume = {51},

year = {2001},

}

TY - JOUR

AU - Polat, Norbert

TI - End-faithful spanning trees of countable graphs with prescribed sets of rays

JO - Czechoslovak Mathematical Journal

PY - 2001

PB - Institute of Mathematics, Academy of Sciences of the Czech Republic

VL - 51

IS - 1

SP - 45

EP - 53

AB - We prove that a countable connected graph has an end-faithful spanning tree that contains a prescribed set of rays whenever this set is countable, and we show that this solution is, in a certain sense, the best possible. This improves a result of Hahn and Širáň Theorem 1.

LA - eng

KW - countable graph; end-faithful graph; spanning trees

UR - http://eudml.org/doc/30613

ER -

## References

top- 10.1007/BF02566233, Comment. Math. Helv. 17 (1944), 1–38. (1944) MR0012214DOI10.1007/BF02566233
- Three remarks on end-faithfulness, Finite and Infinite Combinatorics in Sets and Logic, N. Sauer et al. (eds.), Kluwer, 1993, pp. 125–133. (1993) MR1261200
- 10.1007/BF01362670, Math. Ann. 157 (1964), 125–137. (1964) Zbl0125.11701MR0170340DOI10.1007/BF01362670
- Enden offener Raüme und unendliche diskontinuierliche Gruppen, Comm. Math. Helv. 15 (1943), 27–32. (1943) MR0007646
- 10.1002/mana.19821070124, Math. Nachr. 107 (1982), 283–314. (1982) Zbl0536.05043MR0695755DOI10.1002/mana.19821070124
- 10.1006/jctb.1996.0035, J. Combin. Theory Ser. B 67 (1996), 86–110. (1996) Zbl0855.05051MR1385385DOI10.1006/jctb.1996.0035
- 10.1006/jctb.1996.0057, J. Combin. Theory Ser. B 68 (1996), 56–86. (1996) Zbl0855.05052MR1405706DOI10.1006/jctb.1996.0057
- 10.1016/0012-365X(91)90344-2, Discrete Math. 95 (1991), 321–330. (1991) MR1045600DOI10.1016/0012-365X(91)90344-2
- 10.1016/0012-365X(91)90345-3, Discrete Math. 95 (1991), 331–340. (1991) MR1141946DOI10.1016/0012-365X(91)90345-3
- 10.1016/0095-8956(92)90059-7, J. Combin. Theory Ser. B 54 (1992), 322–324. (1992) Zbl0753.05030MR1152455DOI10.1016/0095-8956(92)90059-7

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.