Finitely valued -modules, an addendum
Czechoslovak Mathematical Journal (2001)
- Volume: 51, Issue: 2, page 387-394
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSteinberg, Stuart A.. "Finitely valued $f$-modules, an addendum." Czechoslovak Mathematical Journal 51.2 (2001): 387-394. <http://eudml.org/doc/30642>.
@article{Steinberg2001,
abstract = {In an $\ell $-group $M$ with an appropriate operator set $\Omega $ it is shown that the $\Omega $-value set $\Gamma _\{\Omega \}(M)$ can be embedded in the value set $\Gamma (M)$. This embedding is an isomorphism if and only if each convex $\ell $-subgroup is an $\Omega $-subgroup. If $\Gamma (M)$ has a.c.c. and $M$ is either representable or finitely valued, then the two value sets are identical. More generally, these results hold for two related operator sets $\Omega _1$ and $\Omega _2$ and the corresponding $\Omega $-value sets $\Gamma _\{\Omega _1\}(M)$ and $\Gamma _\{\Omega _2\}(M)$. If $R$ is a unital $\ell $-ring, then each unital $\ell $-module over $R$ is an $f$-module and has $\Gamma (M) = \Gamma _R(M)$ exactly when $R$ is an $f$-ring in which $1$ is a strong order unit.},
author = {Steinberg, Stuart A.},
journal = {Czechoslovak Mathematical Journal},
keywords = {lattice-ordered module; value set; lattice-ordered module; value set; lattice-ordered group},
language = {eng},
number = {2},
pages = {387-394},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Finitely valued $f$-modules, an addendum},
url = {http://eudml.org/doc/30642},
volume = {51},
year = {2001},
}
TY - JOUR
AU - Steinberg, Stuart A.
TI - Finitely valued $f$-modules, an addendum
JO - Czechoslovak Mathematical Journal
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 51
IS - 2
SP - 387
EP - 394
AB - In an $\ell $-group $M$ with an appropriate operator set $\Omega $ it is shown that the $\Omega $-value set $\Gamma _{\Omega }(M)$ can be embedded in the value set $\Gamma (M)$. This embedding is an isomorphism if and only if each convex $\ell $-subgroup is an $\Omega $-subgroup. If $\Gamma (M)$ has a.c.c. and $M$ is either representable or finitely valued, then the two value sets are identical. More generally, these results hold for two related operator sets $\Omega _1$ and $\Omega _2$ and the corresponding $\Omega $-value sets $\Gamma _{\Omega _1}(M)$ and $\Gamma _{\Omega _2}(M)$. If $R$ is a unital $\ell $-ring, then each unital $\ell $-module over $R$ is an $f$-module and has $\Gamma (M) = \Gamma _R(M)$ exactly when $R$ is an $f$-ring in which $1$ is a strong order unit.
LA - eng
KW - lattice-ordered module; value set; lattice-ordered module; value set; lattice-ordered group
UR - http://eudml.org/doc/30642
ER -
References
top- Lattice-Ordered Groups, D. Reidel, Dordrecht, 1988. (1988) MR0937703
- Sur les endomorphismes conservant les polaires d’ un groupe réticulé archimédien, Bull. Soc. Math. France 97 (1970), 81–96. (1970) MR0262137
- Groupes Et Anneaux Réticulés, Springer-Verlag, Berlin, 1977. (1977) MR0552653
- Lattice-ordered rings, Am. Acad. Brasil. Ci. 28 (1956), 41–69. (1956) MR0080099
- The lattice of all convex -subgroups of a lattice-ordered group, Czechoslovak Math. J. 15 (1965), 101–123. (1965) MR0173716
- Lattice-Ordered Groups, Tulane Lecture Notes, New Orleans, 1970. (1970) Zbl0258.06011
- 10.1215/ijm/1256052710, Illinois J. Math. 15 (1971), 222–240. (1971) MR0285462DOI10.1215/ijm/1256052710
- 10.1090/S0002-9947-1963-0151534-0, Trans. Amer. Math. Soc. 108 (1963), 143–169. (1963) MR0151534DOI10.1090/S0002-9947-1963-0151534-0
- 10.1002/mana.19730580111, Math. Nachr. 58 (1973), 169–191. (1973) MR0330000DOI10.1002/mana.19730580111
- 10.2140/pjm.1972.40.723, Pacific J. Math. 40 (1972), 723–737. (1972) Zbl0218.16008MR0306078DOI10.2140/pjm.1972.40.723
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.