Finitely valued f -modules, an addendum

Stuart A. Steinberg

Czechoslovak Mathematical Journal (2001)

  • Volume: 51, Issue: 2, page 387-394
  • ISSN: 0011-4642

Abstract

top
In an -group M with an appropriate operator set Ω it is shown that the Ω -value set Γ Ω ( M ) can be embedded in the value set Γ ( M ) . This embedding is an isomorphism if and only if each convex -subgroup is an Ω -subgroup. If Γ ( M ) has a.c.c. and M is either representable or finitely valued, then the two value sets are identical. More generally, these results hold for two related operator sets Ω 1 and Ω 2 and the corresponding Ω -value sets Γ Ω 1 ( M ) and Γ Ω 2 ( M ) . If R is a unital -ring, then each unital -module over R is an f -module and has Γ ( M ) = Γ R ( M ) exactly when R is an f -ring in which 1 is a strong order unit.

How to cite

top

Steinberg, Stuart A.. "Finitely valued $f$-modules, an addendum." Czechoslovak Mathematical Journal 51.2 (2001): 387-394. <http://eudml.org/doc/30642>.

@article{Steinberg2001,
abstract = {In an $\ell $-group $M$ with an appropriate operator set $\Omega $ it is shown that the $\Omega $-value set $\Gamma _\{\Omega \}(M)$ can be embedded in the value set $\Gamma (M)$. This embedding is an isomorphism if and only if each convex $\ell $-subgroup is an $\Omega $-subgroup. If $\Gamma (M)$ has a.c.c. and $M$ is either representable or finitely valued, then the two value sets are identical. More generally, these results hold for two related operator sets $\Omega _1$ and $\Omega _2$ and the corresponding $\Omega $-value sets $\Gamma _\{\Omega _1\}(M)$ and $\Gamma _\{\Omega _2\}(M)$. If $R$ is a unital $\ell $-ring, then each unital $\ell $-module over $R$ is an $f$-module and has $\Gamma (M) = \Gamma _R(M)$ exactly when $R$ is an $f$-ring in which $1$ is a strong order unit.},
author = {Steinberg, Stuart A.},
journal = {Czechoslovak Mathematical Journal},
keywords = {lattice-ordered module; value set; lattice-ordered module; value set; lattice-ordered group},
language = {eng},
number = {2},
pages = {387-394},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Finitely valued $f$-modules, an addendum},
url = {http://eudml.org/doc/30642},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Steinberg, Stuart A.
TI - Finitely valued $f$-modules, an addendum
JO - Czechoslovak Mathematical Journal
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 51
IS - 2
SP - 387
EP - 394
AB - In an $\ell $-group $M$ with an appropriate operator set $\Omega $ it is shown that the $\Omega $-value set $\Gamma _{\Omega }(M)$ can be embedded in the value set $\Gamma (M)$. This embedding is an isomorphism if and only if each convex $\ell $-subgroup is an $\Omega $-subgroup. If $\Gamma (M)$ has a.c.c. and $M$ is either representable or finitely valued, then the two value sets are identical. More generally, these results hold for two related operator sets $\Omega _1$ and $\Omega _2$ and the corresponding $\Omega $-value sets $\Gamma _{\Omega _1}(M)$ and $\Gamma _{\Omega _2}(M)$. If $R$ is a unital $\ell $-ring, then each unital $\ell $-module over $R$ is an $f$-module and has $\Gamma (M) = \Gamma _R(M)$ exactly when $R$ is an $f$-ring in which $1$ is a strong order unit.
LA - eng
KW - lattice-ordered module; value set; lattice-ordered module; value set; lattice-ordered group
UR - http://eudml.org/doc/30642
ER -

References

top
  1. Lattice-Ordered Groups, D.  Reidel, Dordrecht, 1988. (1988) MR0937703
  2. Sur les endomorphismes conservant les polaires d’ un groupe réticulé archimédien, Bull. Soc. Math. France 97 (1970), 81–96. (1970) MR0262137
  3. Groupes Et Anneaux Réticulés, Springer-Verlag, Berlin, 1977. (1977) MR0552653
  4. Lattice-ordered rings, Am. Acad. Brasil. Ci. 28 (1956), 41–69. (1956) MR0080099
  5. The lattice of all convex -subgroups of a lattice-ordered group, Czechoslovak Math. J. 15 (1965), 101–123. (1965) MR0173716
  6. Lattice-Ordered Groups, Tulane Lecture Notes, New Orleans, 1970. (1970) Zbl0258.06011
  7. 10.1215/ijm/1256052710, Illinois J.  Math. 15 (1971), 222–240. (1971) MR0285462DOI10.1215/ijm/1256052710
  8. 10.1090/S0002-9947-1963-0151534-0, Trans. Amer. Math. Soc. 108 (1963), 143–169. (1963) MR0151534DOI10.1090/S0002-9947-1963-0151534-0
  9. 10.1002/mana.19730580111, Math. Nachr. 58 (1973), 169–191. (1973) MR0330000DOI10.1002/mana.19730580111
  10. 10.2140/pjm.1972.40.723, Pacific J.  Math. 40 (1972), 723–737. (1972) Zbl0218.16008MR0306078DOI10.2140/pjm.1972.40.723

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.