Displaying similar documents to “Finitely valued f -modules, an addendum”

Characterizations of incidence modules

Naseer Ullah, Hailou Yao, Qianqian Yuan, Muhammad Azam (2024)

Czechoslovak Mathematical Journal

Similarity:

Let R be an associative ring and M be a left R -module. We introduce the concept of the incidence module I ( X , M ) of a locally finite partially ordered set X over M . We study the properties of I ( X , M ) and give the necessary and sufficient conditions for the incidence module to be an IN-module, -module, nil injective module and nonsingular module, respectively. Furthermore, we show that the class of -modules is closed under direct product and upper triangular matrix modules.

On generalized CS-modules

Qingyi Zeng (2015)

Czechoslovak Mathematical Journal

Similarity:

An 𝒮 -closed submodule of a module M is a submodule N for which M / N is nonsingular. A module M is called a generalized CS-module (or briefly, GCS-module) if any 𝒮 -closed submodule N of M is a direct summand of M . Any homomorphic image of a GCS-module is also a GCS-module. Any direct sum of a singular (uniform) module and a semi-simple module is a GCS-module. All nonsingular right R -modules are projective if and only if all right R -modules are GCS-modules.

Generalized tilting modules over ring extension

Zhen Zhang (2019)

Czechoslovak Mathematical Journal

Similarity:

Let Γ be a ring extension of R . We show the left Γ -module U = Γ R C with the endmorphism ring End Γ U = Δ is a generalized tilting module when R C is a generalized tilting module under some conditions.

Pure subgroups

Ladislav Bican (2001)

Mathematica Bohemica

Similarity:

Let λ be an infinite cardinal. Set λ 0 = λ , define λ i + 1 = 2 λ i for every i = 0 , 1 , , take μ as the first cardinal with λ i < μ , i = 0 , 1 , and put κ = ( μ 0 ) + . If F is a torsion-free group of cardinality at least κ and K is its subgroup such that F / K is torsion and | F / K | λ , then K contains a non-zero subgroup pure in F . This generalizes the result from a previous paper dealing with F / K p -primary.

On TI-subgroups and QTI-subgroups of finite groups

Ruifang Chen, Xianhe Zhao (2020)

Czechoslovak Mathematical Journal

Similarity:

Let G be a group. A subgroup H of G is called a TI-subgroup if H H g = 1 or H for every g G and H is called a QTI-subgroup if C G ( x ) N G ( H ) for any 1 x H . In this paper, a finite group in which every nonabelian maximal is a TI-subgroup (QTI-subgroup) is characterized.

Relative Gorenstein injective covers with respect to a semidualizing module

Elham Tavasoli, Maryam Salimi (2017)

Czechoslovak Mathematical Journal

Similarity:

Let R be a commutative Noetherian ring and let C be a semidualizing R -module. We prove a result about the covering properties of the class of relative Gorenstein injective modules with respect to C which is a generalization of Theorem 1 by Enochs and Iacob (2015). Specifically, we prove that if for every G C -injective module G , the character module G + is G C -flat, then the class 𝒢ℐ C ( R ) 𝒜 C ( R ) is closed under direct sums and direct limits. Also, it is proved that under the above hypotheses the class 𝒢ℐ C ( R ) 𝒜 C ( R ) ...

Ulm-Kaplansky invariants of S(KG)/G

P. V. Danchev (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let G be an infinite abelian p-group and let K be a field of the first kind with respect to p of characteristic different from p such that s p ( K ) = or s p ( K ) = 0 . The main result of the paper is the computation of the Ulm-Kaplansky functions of the factor group S(KG)/G of the normalized Sylow p-subgroup S(KG) in the group ring KG modulo G. We also characterize the basic subgroups of S(KG)/G by proving that they are isomorphic to S(KB)/B, where B is a basic subgroup of G.

Special modules for R ( PSL ( 2 , q ) )

Liufeng Cao, Huixiang Chen (2023)

Czechoslovak Mathematical Journal

Similarity:

Let R be a fusion ring and R : = R be the corresponding fusion algebra. We first show that the algebra R has only one left (right, two-sided) cell and the corresponding left (right, two-sided) cell module. Then we prove that, up to isomorphism, R admits a unique special module, which is 1-dimensional and given by the Frobenius-Perron homomorphism FPdim. Moreover, as an example, we explicitly determine the special module of the interpolated fusion algebra R ( PSL ( 2 , q ) ) : = r ( PSL ( 2 , q ) ) up to isomorphism, where r ( PSL ( 2 , q ) ) is the...