Estimates for the energy integral of quasiregular mappings on Riemannian manifolds and isoperimetry

Olli Martio; V. Miklyukov; M. Vuorinen

Czechoslovak Mathematical Journal (2001)

  • Volume: 51, Issue: 3, page 585-608
  • ISSN: 0011-4642

Abstract

top
The rate of growth of the energy integral of a quasiregular mapping f 𝒳 𝒴 is estimated in terms of a special isoperimetric condition on 𝒴 . The estimate leads to new Phragmén-Lindelöf type theorems.

How to cite

top

Martio, Olli, Miklyukov, V., and Vuorinen, M.. "Estimates for the energy integral of quasiregular mappings on Riemannian manifolds and isoperimetry." Czechoslovak Mathematical Journal 51.3 (2001): 585-608. <http://eudml.org/doc/30657>.

@article{Martio2001,
abstract = {The rate of growth of the energy integral of a quasiregular mapping $f\:\mathcal \{X\}\rightarrow \mathcal \{Y\}$ is estimated in terms of a special isoperimetric condition on $\mathcal \{Y\}$. The estimate leads to new Phragmén-Lindelöf type theorems.},
author = {Martio, Olli, Miklyukov, V., Vuorinen, M.},
journal = {Czechoslovak Mathematical Journal},
keywords = {Phragmén-Lindelöf type theorems; quasiregular mappings; isoperimetry; Phragmén-Lindelöf type theorems; quasiregular mappings; isoperimetry},
language = {eng},
number = {3},
pages = {585-608},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Estimates for the energy integral of quasiregular mappings on Riemannian manifolds and isoperimetry},
url = {http://eudml.org/doc/30657},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Martio, Olli
AU - Miklyukov, V.
AU - Vuorinen, M.
TI - Estimates for the energy integral of quasiregular mappings on Riemannian manifolds and isoperimetry
JO - Czechoslovak Mathematical Journal
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 51
IS - 3
SP - 585
EP - 608
AB - The rate of growth of the energy integral of a quasiregular mapping $f\:\mathcal {X}\rightarrow \mathcal {Y}$ is estimated in terms of a special isoperimetric condition on $\mathcal {Y}$. The estimate leads to new Phragmén-Lindelöf type theorems.
LA - eng
KW - Phragmén-Lindelöf type theorems; quasiregular mappings; isoperimetry; Phragmén-Lindelöf type theorems; quasiregular mappings; isoperimetry
UR - http://eudml.org/doc/30657
ER -

References

top
  1. 10.1007/BF02420945, Acta Math. 65 (1935), 157–194. (1935) MR1555403DOI10.1007/BF02420945
  2. Phragmén-Lindelöf’s theorems for space mappings with boundary distortion, Dissertation, Volgograd (1983), 1–96. (1983) 
  3. Geometric Inequalities, Nauka, Moscow, 1980. (1980) MR0602952
  4. Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. École Norm. Sup. (4) Ser. 13 (1980), 419–435. (1980) Zbl0465.53032MR0608287
  5. Geometric Measure Theory, Springer-Verlag, Berlin-Heidelberg-New York, 1969. (1969) Zbl0176.00801MR0257325
  6. 10.1007/BF02384420, Ark. Mat. 23 (1985), 103–128. (1985) MR0800175DOI10.1007/BF02384420
  7. 10.1007/BF01388806, Invent. Math. 82 (1985), 307–347. (1985) MR0809718DOI10.1007/BF01388806
  8. Nonlinear Potential Theory of Degenerate Elliptic Equations, Clarendon Press, 1993. (1993) MR1207810
  9. 10.1002/cpa.3160270601, Comm. Pure Appl. Math. 27 (1974), 715–727. (1974) MR0365424DOI10.1002/cpa.3160270601
  10. 10.1007/BF01047672, Potential Analysis 2 (1993), 37–66. (1993) MR1245236DOI10.1007/BF01047672
  11. On functions of two variables, Uspekhi Mat. Nauk 5 (1950), 24–134. (Russian) (1950) MR0034826
  12. Differential forms and quasiregular mappings on Riemannian manifolds, XVIth Rolf Nevanlinna Colloquium (I. Laine and O. Martio, eds.), Walter de Gruyter &Co, 1996, pp. 151–159. (1996) MR1427080
  13. Phragmén – Lindelöf’s principle for quasiregular mappings and isoperimetry, Dokl. Akad. Nauk 347 (1996), 303–305. (Russian) (1996) MR1393057
  14. Asymptotic properties of subsolutions of quasilinear equations of elliptic type and mappings with bounded distortion, Mat. Sb. 11 (1980), 42–66. (Russian) (1980) MR0560463
  15. Quasiconformal mappings and manifolds of negative curvature, Curvature and Topology of Riemannian Manifolds. Proceed. 17th Int. Taniguchi Symp., Katata, Japan, Aug. 26-31, 1985. Zbl0592.53031MR0859587
  16. 10.1007/BF02415450, Acta Math. 31 (1908), 381–406. (1908) MR1555044DOI10.1007/BF02415450
  17. 10.5186/aasfm.1982.0727, Ann. Acad. Sci. Fenn. Math. 7 (1982), 221–231. (1982) MR0686641DOI10.5186/aasfm.1982.0727
  18. Conformal Geometry and Quasiregular Mappings, Lecture Notes in Math., 1319, Springer-Verlag. Zbl0646.30025MR0950174
  19. 10.24033/asens.1299, Ann. Sci. École Norm. Sup. 8 (1975), 487–507. (1975) Zbl0325.53039MR0397619DOI10.24033/asens.1299

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.