Some isoperimetric inequalities and eigenvalue estimates
Annales scientifiques de l'École Normale Supérieure (1980)
- Volume: 13, Issue: 4, page 419-435
- ISSN: 0012-9593
Access Full Article
topHow to cite
topCroke, Christopher B.. "Some isoperimetric inequalities and eigenvalue estimates." Annales scientifiques de l'École Normale Supérieure 13.4 (1980): 419-435. <http://eudml.org/doc/82059>.
@article{Croke1980,
author = {Croke, Christopher B.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {isoperimetric inequality; geodesic ray; first eigenvalue of the Dirichlet problem; Laplacian},
language = {eng},
number = {4},
pages = {419-435},
publisher = {Elsevier},
title = {Some isoperimetric inequalities and eigenvalue estimates},
url = {http://eudml.org/doc/82059},
volume = {13},
year = {1980},
}
TY - JOUR
AU - Croke, Christopher B.
TI - Some isoperimetric inequalities and eigenvalue estimates
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1980
PB - Elsevier
VL - 13
IS - 4
SP - 419
EP - 435
LA - eng
KW - isoperimetric inequality; geodesic ray; first eigenvalue of the Dirichlet problem; Laplacian
UR - http://eudml.org/doc/82059
ER -
References
top- [1] M. BERGER, Lectures on Geodesics in Riemannian Geometry, Tata Institute, Bombay, 1965. Zbl0165.55601MR35 #6100
- [2] M. BERGER, Some Relations Between Volume, Injectivity Radius, and Convexity Radius in Riemannian Manifolds, Differential Geometry and Relativity, D. Reidel Publishing Co., Dordrecht-Boston, 1976, pp. 33-42. Zbl0342.53038MR56 #6562
- [3] M. BERGER, Une inégalité universelle pour la première valeur propre du laplacien (Bull. Soc. math. Fr., T. 107, 1979, pp. 3-9). Zbl0399.35080MR80f:58046
- [4] A. BESSE, Manifolds All of Whose Geodesics are Closed (Ergebnisse der Mathematik, Vol. 93, Springer, Berlin-Heidelberg-New York, 1978). Zbl0387.53010MR80c:53044
- [5] R. BISHOP and R. CRITTENDEN, Geometry of Manifolds, Academic Press, 1964. Zbl0132.16003MR29 #6401
- [6] J. CHEEGER, A Lower Bound for the Smallest Eigenvalue of the Laplacian, in Problems in Analysis (A Symposium in Honor of S. Bochner, Princeton University Press, Princeton, 1970, pp. 195-199). Zbl0212.44903MR53 #6645
- [7] J. CHEEGER and D. G. EBIN, Comparison Theorems in Riemannian Geometry, North Holland, Amsterdam, 1975. Zbl0309.53035MR56 #16538
- [8] S.-Y. CHENG, On the Hayman-Osserman-Taylor Inequality (preprint).
- [9] L. W. GREEN, Auf Wiedersehenflächen (Ann. of Math., Vol. 78, 1963, pp. 289-299). Zbl0116.13503MR27 #5206
- [10] P. LI, On the Sobolev Constant and the p-Spectrum of a Compact Riemannian Manifold (Ann. scient. Éc. Norm. Sup., T. 13, 1980, pp. 451-467). Zbl0466.53023MR82h:58054
- [11] R. OSSERMAN, The Isoperimetric Inequality (Bull. Amer. Math. Soc., Vol. 87, 1978, pp. 1182-1238). Zbl0411.52006MR58 #18161
- [12] L. A. SANTALÓ, Integral Geometry and Geometric Probability (Encyclopedia of Mathematics and Its Applications), Addison-Wesley, London-Amsterdam-Dom Mills, Ontario-Sydney-Tokyo, 1976. Zbl0342.53049MR55 #6340
- [13] S.-T. YAU, Isoperimetric Constants and the First Eigenvalue of a Compact Riemannian Manifold [Ann. scient. Éc. Norm. Sup., (4), T. 8, 1975, pp. 487-507]. Zbl0325.53039MR53 #1478
Citations in EuDML Documents
top- Marcel Berger, Une borne inférieure pour le volume d'une variété riemannienne en fonction du rayon d'injectivité
- Deane Yang, pinching and compactness theorems for compact riemannian manifolds
- Peter Li, On the Sobolev constant and the -spectrum of a compact riemannian manifold
- Olli Martio, V. Miklyukov, M. Vuorinen, Estimates for the energy integral of quasiregular mappings on Riemannian manifolds and isoperimetry
- Michael Cowling, Stefano Meda, Roberta Pasquale, Riesz potentials and amalgams
- Vincent Minerbe, On the asymptotic geometry of gravitational instantons
- Deane Yang, Convergence of riemannian manifolds with integral bounds on curvature. I
- Francescopaolo Montefalcone, Some relations among volume, intrinsic perimeter and one-dimensional restrictions of functions in Carnot groups
- Peter Buser, A note on the isoperimetric constant
- Sylvestre Gallot, Finiteness theorems with integral conditions on curvature
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.