Multiresolution analysis and Radon measures on a locally compact Abelian group
Czechoslovak Mathematical Journal (2001)
- Volume: 51, Issue: 4, page 859-871
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGalindo, Félix, and Sanz, Javier. "Multiresolution analysis and Radon measures on a locally compact Abelian group." Czechoslovak Mathematical Journal 51.4 (2001): 859-871. <http://eudml.org/doc/30676>.
@article{Galindo2001,
abstract = {A multiresolution analysis is defined in a class of locally compact abelian groups $G$. It is shown that the spaces of integrable functions $\mathcal \{L\}^p(G)$ and the complex Radon measures $M(G)$ admit a simple characterization in terms of this multiresolution analysis.},
author = {Galindo, Félix, Sanz, Javier},
journal = {Czechoslovak Mathematical Journal},
keywords = {multiresolution analysis; Radon measures; topological groups; multiresolution analysis; Radon measures; topological groups; locally compact abelian groups},
language = {eng},
number = {4},
pages = {859-871},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Multiresolution analysis and Radon measures on a locally compact Abelian group},
url = {http://eudml.org/doc/30676},
volume = {51},
year = {2001},
}
TY - JOUR
AU - Galindo, Félix
AU - Sanz, Javier
TI - Multiresolution analysis and Radon measures on a locally compact Abelian group
JO - Czechoslovak Mathematical Journal
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 51
IS - 4
SP - 859
EP - 871
AB - A multiresolution analysis is defined in a class of locally compact abelian groups $G$. It is shown that the spaces of integrable functions $\mathcal {L}^p(G)$ and the complex Radon measures $M(G)$ admit a simple characterization in terms of this multiresolution analysis.
LA - eng
KW - multiresolution analysis; Radon measures; topological groups; multiresolution analysis; Radon measures; topological groups; locally compact abelian groups
UR - http://eudml.org/doc/30676
ER -
References
top- Vector Measures. Mathematical Surveys, Number 15, AMS, Providence, Rhode Island, 1977. (1977) MR0453964
- Linear Operators. Part I: General Theory, Wiley Interscience, New York, 1988. (1988) MR1009162
- Littlewood-Paley and Multiplier Theory, Springer-Verlag, Berlin, 1977. (1977) MR0618663
- Procesos semiperiódicos multidimensionales. Multiplicadores y funciones de transferencia, Ph.D. Thesis, Universidad de Valladolid, Valladolid, 1995. (1995)
- Abstract Harmonic Analysis I, Springer-Verlag, Berlin, 1963. (1963)
- Abstract Harmonic Analysis II, Springer-Verlag, Berlin, 1970. (1970) MR0262773
- 10.1137/S0036141093248049, SIAM J. Math. Anal. 27 (1996), 305–312. (1996) Zbl0841.42014MR1373159DOI10.1137/S0036141093248049
- An Introduction to the Theory of Multipliers, Springer-Verlag, Berlin, 1971. (1971) Zbl0213.13301MR0435738
- 10.24033/bsmf.2118, Bull. Soc. Math. France 117 (1989), 211–232. (1989) MR1015808DOI10.24033/bsmf.2118
- Multiresolution approximations and wavelet orthonormal bases of , Trans. Amer. Math. Soc. 315 (1989), 69–87. (1989) Zbl0686.42018MR1008470
- Wavelets and operators, Cambridge University Press, Cambridge, 1992. (1992) Zbl0776.42019MR1228209
- Multipliers on the space of semiperiodic sequences, Trans. Amer. Math. Soc. 291 (1984), 801–811. (1984) MR0800264
- Integral, Measure and Derivative: a unified approach, Dover, New York, 1977. (1977) MR0466463
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.