On the Stieltjes moment problem on semigroups

Torben Maack Bisgaard

Czechoslovak Mathematical Journal (2002)

  • Volume: 52, Issue: 1, page 155-196
  • ISSN: 0011-4642

Abstract

top
We characterize finitely generated abelian semigroups such that every completely positive definite function (a function all of whose shifts are positive definite) is an integral of nonnegative miltiplicative real-valued functions (called nonnegative characters).

How to cite

top

Bisgaard, Torben Maack. "On the Stieltjes moment problem on semigroups." Czechoslovak Mathematical Journal 52.1 (2002): 155-196. <http://eudml.org/doc/30692>.

@article{Bisgaard2002,
abstract = {We characterize finitely generated abelian semigroups such that every completely positive definite function (a function all of whose shifts are positive definite) is an integral of nonnegative miltiplicative real-valued functions (called nonnegative characters).},
author = {Bisgaard, Torben Maack},
journal = {Czechoslovak Mathematical Journal},
keywords = {semigroup; abelian; commutative; finitely generated; positive definite; completely positive definite; character; semigroup; abelian; commutative; finitely generated; positive definite; completely positive definite; character; abelian semigroups; positive definite function},
language = {eng},
number = {1},
pages = {155-196},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the Stieltjes moment problem on semigroups},
url = {http://eudml.org/doc/30692},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Bisgaard, Torben Maack
TI - On the Stieltjes moment problem on semigroups
JO - Czechoslovak Mathematical Journal
PY - 2002
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 52
IS - 1
SP - 155
EP - 196
AB - We characterize finitely generated abelian semigroups such that every completely positive definite function (a function all of whose shifts are positive definite) is an integral of nonnegative miltiplicative real-valued functions (called nonnegative characters).
LA - eng
KW - semigroup; abelian; commutative; finitely generated; positive definite; completely positive definite; character; semigroup; abelian; commutative; finitely generated; positive definite; completely positive definite; character; abelian semigroups; positive definite function
UR - http://eudml.org/doc/30692
ER -

References

top
  1. The Classical Moment Problem, Oliver and Boyd, Edinburgh, 1965. (1965) 
  2. Positive definite and related functions on semigroups, In: The Analytical and Topological Theory of Semigroups, K. H.  Hofmann, J. D.  Lawson and J. S.  Pym (eds.), Walter de Gruyter &  Co., Berlin, 1990. (1990) Zbl0722.43005MR1072791
  3. 10.1007/BF01420423, Math. Ann. 243 (1979), 163–169. (1979) MR0543726DOI10.1007/BF01420423
  4. Harmonic Analysis on Semigroups, Springer-Verlag, Berlin, 1984. (1984) MR0747302
  5. 10.1007/BF01456974, Math. Ann. 282 (1988), 251–258. (1988) MR0963015DOI10.1007/BF01456974
  6. 10.1007/BF02574146, Semigroup Forum 53 (1996), 317–320. (1996) Zbl0867.43002MR1406777DOI10.1007/BF02574146
  7. 10.1007/BF02559595, Ark. Mat. 35 (1997), 127–156. (1997) Zbl0886.43006MR1443038DOI10.1007/BF02559595
  8. 10.1023/A:1006511012031, Acta Math. Hung. 79 (1998), 269–294. (1998) Zbl0909.20047MR1619811DOI10.1023/A:1006511012031
  9. 10.1007/PL00005988, Semigroup Forum 57 (1998), 397–429. (1998) Zbl0923.47010MR1640879DOI10.1007/PL00005988
  10. 10.1007/PL00006030, Semigroup Forum 61 (2000), 317–332. (2000) Zbl0967.43001MR1832308DOI10.1007/PL00006030
  11. 10.1007/s002080050320, Math. Ann. 315 (1999), 141–168. (1999) MR1717546DOI10.1007/s002080050320
  12. Unique disintegration of arbitrary positive definite functions on * -divisible semigroups, Math.  Z. 200 (1989), 511–525. (1989) MR0987584
  13. An Introduction to Convex Polytopes, Springer-Verlag, Berlin, 1983. (1983) MR0683612
  14. The Algebraic Theory of Semigroups, American Mathematical Society, Providence, 1961. (1961) MR0132791
  15. 10.1007/BF01443605, Math. Ann. 32 (1888), 342–350. (1888) MR1510517DOI10.1007/BF01443605
  16. 10.1016/0022-247X(84)90267-1, J.  Math. Anal. Appl. 98 (1984), 528–554. (1984) MR0730525DOI10.1016/0022-247X(84)90267-1
  17. Extremal Families and Systems of Sufficient Statistics, Springer-Verlag, Berlin, 1988. (1988) Zbl0681.62009MR0971253
  18. Inequalities: Theory of Majorization and its Applications, Academic Press, New York, 1979. (1979) MR0552278
  19. 10.1007/BF03025764, Semigroup Forum 45 (1992), 241–248. (1992) MR1171848DOI10.1007/BF03025764
  20. 10.1002/mana.19790880130, Math. Nachr. 88 (1979), 385–390. (1979) MR0543417DOI10.1002/mana.19790880130
  21. 10.5802/afst.108, Ann. Fac. Sci. Toulouse Math. 8 (1894), 1–122. (1894) MR1508159DOI10.5802/afst.108

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.