Stieltjes perfect semigroups are perfect
Torben Maack Bisgaard; Nobuhisa Sakakibara
Czechoslovak Mathematical Journal (2005)
- Volume: 55, Issue: 3, page 729-753
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBisgaard, Torben Maack, and Sakakibara, Nobuhisa. "Stieltjes perfect semigroups are perfect." Czechoslovak Mathematical Journal 55.3 (2005): 729-753. <http://eudml.org/doc/30984>.
@article{Bisgaard2005,
abstract = {An abelian $*$-semigroup $S$ is perfect (resp. Stieltjes perfect) if every positive definite (resp. completely so) function on $S$ admits a unique disintegration as an integral of hermitian multiplicative functions (resp. nonnegative such). We prove that every Stieltjes perfect semigroup is perfect. The converse has been known for semigroups with neutral element, but is here shown to be not true in general. We prove that an abelian $*$-semigroup $S$ is perfect if for each $s \in S$ there exist $t\in S$ and $m,n\in \mathbb \{N\}_0$ such that $m+n\ge 2$ and $s+s^ *=s^*+mt+nt^*$. This was known only with $s=mt+nt^*$ instead. The equality cannot be replaced by $s+s^*+s=s+s^*+mt+nt^*$ in general, but for semigroups with neutral element it can be replaced by $s+p(s+s^*)=p(s+s^*)+ mt+nt^*$ for arbitrary $p\in \mathbb \{N\}$ (allowed to depend on $s$).},
author = {Bisgaard, Torben Maack, Sakakibara, Nobuhisa},
journal = {Czechoslovak Mathematical Journal},
keywords = {perfect; Stieltjes perfect; moment; positive definite; conelike; semi-$*$-divisible; $*$-semigroup; perfect; Stieltjes perfect; moment; positive definite; conelike; semi--divisible; -semigroup},
language = {eng},
number = {3},
pages = {729-753},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Stieltjes perfect semigroups are perfect},
url = {http://eudml.org/doc/30984},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Bisgaard, Torben Maack
AU - Sakakibara, Nobuhisa
TI - Stieltjes perfect semigroups are perfect
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 3
SP - 729
EP - 753
AB - An abelian $*$-semigroup $S$ is perfect (resp. Stieltjes perfect) if every positive definite (resp. completely so) function on $S$ admits a unique disintegration as an integral of hermitian multiplicative functions (resp. nonnegative such). We prove that every Stieltjes perfect semigroup is perfect. The converse has been known for semigroups with neutral element, but is here shown to be not true in general. We prove that an abelian $*$-semigroup $S$ is perfect if for each $s \in S$ there exist $t\in S$ and $m,n\in \mathbb {N}_0$ such that $m+n\ge 2$ and $s+s^ *=s^*+mt+nt^*$. This was known only with $s=mt+nt^*$ instead. The equality cannot be replaced by $s+s^*+s=s+s^*+mt+nt^*$ in general, but for semigroups with neutral element it can be replaced by $s+p(s+s^*)=p(s+s^*)+ mt+nt^*$ for arbitrary $p\in \mathbb {N}$ (allowed to depend on $s$).
LA - eng
KW - perfect; Stieltjes perfect; moment; positive definite; conelike; semi-$*$-divisible; $*$-semigroup; perfect; Stieltjes perfect; moment; positive definite; conelike; semi--divisible; -semigroup
UR - http://eudml.org/doc/30984
ER -
References
top- The Classical Moment Problem and Some Related Questions in Analysis, Oliver & Boyd, Edinburgh, 1965. (1965) Zbl0135.33803MR0184042
- Fonctions définies négatives et majoration de Schur, In: Théorie du Potentiel (Orsay, 1983), Lecture Notes in Mathematics Vol. 1096, G. Mokobodzki, D. Pinchon (eds.), Springer-Verlag, Berlin, 1984, pp. 69–89. (1984) Zbl0554.43002MR0890354
- 10.1007/BF01420423, Math. Ann. 243 (1979), 163–169. (1979) MR0543726DOI10.1007/BF01420423
- Harmonic Analysis on Semigroups. Theory of Positive Definite and Related Functions, Springer-Verlag, Berlin, 1984. (1984) MR0747302
- 10.7146/math.scand.a-12281, Math. Scand. 65 (1989), 245–258. (1989) Zbl0739.43007MR1050867DOI10.7146/math.scand.a-12281
- 10.1007/BF02574146, Semigroup Forum 53 (1996), 317–320. (1996) Zbl0867.43002MR1406777DOI10.1007/BF02574146
- 10.1007/PL00005988, Semigroup Forum 57 (1998), 397–429. (1998) Zbl0923.47010MR1640879DOI10.1007/PL00005988
- 10.1023/A:1006511012031, Acta Math. Hungar. 79 (1998), 269–294. (1998) Zbl0909.20047MR1619811DOI10.1023/A:1006511012031
- Semiperfect countable -separative -finite semigroups, Collect. Math. 52 (2001), 55–73. (2001) MR1833086
- 10.1007/s002330010062, Semigroup Forum 64 (2002), 243–264. (2002) Zbl1015.43005MR1876858DOI10.1007/s002330010062
- 10.1002/1522-2616(200203)236:1<31::AID-MANA31>3.0.CO;2-D, Math. Nachr. 236 (2002), 31–46. (2002) Zbl1015.43005MR1888556DOI10.1002/1522-2616(200203)236:1<31::AID-MANA31>3.0.CO;2-D
- Extensions of Herglotz’ Theorem, Comm. Math. Univ. Sct. Pauli 51 (2002), 195–215. (2002) Zbl1037.43006MR1955171
- 10.1023/A:1021783707324, Czechoslovak Math. J. 52(127) (2002), 155–196. (2002) Zbl1021.43003MR1885464DOI10.1023/A:1021783707324
- 10.7146/math.scand.a-14391, Math. Scand. 91 (2002), 285–319. (2002) Zbl1017.43004MR1931575DOI10.7146/math.scand.a-14391
- Unique disintegration of arbitrary positive definite functions on -divisible semigroups, Math. Z. 200 (1989), 511–525. (1989) MR0987584
- 10.7146/math.scand.a-14378, Math. Scand. 91 (2002), 55–66. (2002) MR1917681DOI10.7146/math.scand.a-14378
- The Algebraic Theory of Semigroups, Vol. I, Amer. Math. Soc., Providence, 1961. (1961) MR0132791
- Measure Theory, Springer-Verlag, Berlin, 1974. (1974) Zbl0283.28001
- 10.1007/BF01564869, Math. Ann. 81 (1920), 235–319. (1920) MR1511966DOI10.1007/BF01564869
- Über Potenzreihen mit positivem, reellen Teil im Einheitskreis, Ber. Verh. Königl. Sächs. Ges. Wiss. Leipzig, Math.-Phys. Kl. 63 (1911), 501–511. (1911)
- 10.1002/1522-2616(200008)216:1<155::AID-MANA155>3.0.CO;2-X, Math. Nachr. 216 (2000), 155–167. (2000) MR1774907DOI10.1002/1522-2616(200008)216:1<155::AID-MANA155>3.0.CO;2-X
- 10.1007/BF01420963, Math. Ann. 234 (1978), 125–138. (1978) Zbl0358.43003MR0481933DOI10.1007/BF01420963
- Über positive Funktionen auf einer Abelschen Gruppe, C. R. (Doklady) Akad. Sci. URSS (N.S.) 28 (1940), 294–295. (1940) MR0003459
- Positive definite functions on commutative groups with an invariant measure, C. R. (Doklady) Akad. Sci. URSS (N.S.) 28 (1940), 296–300. (1940) MR0003460
- 10.14492/hokmj/1380892538, Hokkaido Math. J. 24 (1995), 113–125. (1995) MR1319033DOI10.14492/hokmj/1380892538
- 10.1002/mana.19790880130, Math. Nachr. 88 (1979), 385–390. (1979) MR0543417DOI10.1002/mana.19790880130
- The Problem of Moments, Amer. Math. Soc., Providence, 1943. (1943) MR0008438
- 10.5802/afst.108, Ann. Fac. Sci. Toulouse 8 (1894), 1–122. (1894) MR1508159DOI10.5802/afst.108
- Characters on inverse semigroups, Czechoslovak Math. J. 11 (1961), 150–154. (1961) MR0130315
- L’intégration dans les groupes topologiques et ses applications, Actual. Sci. Ind., No. 869 and 1145, Hermann et Cie., Paris (1940 and 1951). (1940 and 1951) MR0005741
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.