Stieltjes perfect semigroups are perfect

Torben Maack Bisgaard; Nobuhisa Sakakibara

Czechoslovak Mathematical Journal (2005)

  • Volume: 55, Issue: 3, page 729-753
  • ISSN: 0011-4642

Abstract

top
An abelian * -semigroup S is perfect (resp. Stieltjes perfect) if every positive definite (resp. completely so) function on S admits a unique disintegration as an integral of hermitian multiplicative functions (resp. nonnegative such). We prove that every Stieltjes perfect semigroup is perfect. The converse has been known for semigroups with neutral element, but is here shown to be not true in general. We prove that an abelian * -semigroup S is perfect if for each s S there exist t S and m , n 0 such that m + n 2 and s + s * = s * + m t + n t * . This was known only with s = m t + n t * instead. The equality cannot be replaced by s + s * + s = s + s * + m t + n t * in general, but for semigroups with neutral element it can be replaced by s + p ( s + s * ) = p ( s + s * ) + m t + n t * for arbitrary p (allowed to depend on s ).

How to cite

top

Bisgaard, Torben Maack, and Sakakibara, Nobuhisa. "Stieltjes perfect semigroups are perfect." Czechoslovak Mathematical Journal 55.3 (2005): 729-753. <http://eudml.org/doc/30984>.

@article{Bisgaard2005,
abstract = {An abelian $*$-semigroup $S$ is perfect (resp. Stieltjes perfect) if every positive definite (resp. completely so) function on $S$ admits a unique disintegration as an integral of hermitian multiplicative functions (resp. nonnegative such). We prove that every Stieltjes perfect semigroup is perfect. The converse has been known for semigroups with neutral element, but is here shown to be not true in general. We prove that an abelian $*$-semigroup $S$ is perfect if for each $s \in S$ there exist $t\in S$ and $m,n\in \mathbb \{N\}_0$ such that $m+n\ge 2$ and $s+s^ *=s^*+mt+nt^*$. This was known only with $s=mt+nt^*$ instead. The equality cannot be replaced by $s+s^*+s=s+s^*+mt+nt^*$ in general, but for semigroups with neutral element it can be replaced by $s+p(s+s^*)=p(s+s^*)+ mt+nt^*$ for arbitrary $p\in \mathbb \{N\}$ (allowed to depend on $s$).},
author = {Bisgaard, Torben Maack, Sakakibara, Nobuhisa},
journal = {Czechoslovak Mathematical Journal},
keywords = {perfect; Stieltjes perfect; moment; positive definite; conelike; semi-$*$-divisible; $*$-semigroup; perfect; Stieltjes perfect; moment; positive definite; conelike; semi--divisible; -semigroup},
language = {eng},
number = {3},
pages = {729-753},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Stieltjes perfect semigroups are perfect},
url = {http://eudml.org/doc/30984},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Bisgaard, Torben Maack
AU - Sakakibara, Nobuhisa
TI - Stieltjes perfect semigroups are perfect
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 3
SP - 729
EP - 753
AB - An abelian $*$-semigroup $S$ is perfect (resp. Stieltjes perfect) if every positive definite (resp. completely so) function on $S$ admits a unique disintegration as an integral of hermitian multiplicative functions (resp. nonnegative such). We prove that every Stieltjes perfect semigroup is perfect. The converse has been known for semigroups with neutral element, but is here shown to be not true in general. We prove that an abelian $*$-semigroup $S$ is perfect if for each $s \in S$ there exist $t\in S$ and $m,n\in \mathbb {N}_0$ such that $m+n\ge 2$ and $s+s^ *=s^*+mt+nt^*$. This was known only with $s=mt+nt^*$ instead. The equality cannot be replaced by $s+s^*+s=s+s^*+mt+nt^*$ in general, but for semigroups with neutral element it can be replaced by $s+p(s+s^*)=p(s+s^*)+ mt+nt^*$ for arbitrary $p\in \mathbb {N}$ (allowed to depend on $s$).
LA - eng
KW - perfect; Stieltjes perfect; moment; positive definite; conelike; semi-$*$-divisible; $*$-semigroup; perfect; Stieltjes perfect; moment; positive definite; conelike; semi--divisible; -semigroup
UR - http://eudml.org/doc/30984
ER -

References

top
  1. The Classical Moment Problem and Some Related Questions in Analysis, Oliver & Boyd, Edinburgh, 1965. (1965) Zbl0135.33803MR0184042
  2. Fonctions définies négatives et majoration de Schur, In: Théorie du Potentiel (Orsay, 1983), Lecture Notes in Mathematics Vol. 1096, G. Mokobodzki, D.  Pinchon (eds.), Springer-Verlag, Berlin, 1984, pp. 69–89. (1984) Zbl0554.43002MR0890354
  3. 10.1007/BF01420423, Math. Ann. 243 (1979), 163–169. (1979) MR0543726DOI10.1007/BF01420423
  4. Harmonic Analysis on Semigroups. Theory of Positive Definite and Related Functions, Springer-Verlag, Berlin, 1984. (1984) MR0747302
  5. 10.7146/math.scand.a-12281, Math. Scand. 65 (1989), 245–258. (1989) Zbl0739.43007MR1050867DOI10.7146/math.scand.a-12281
  6. 10.1007/BF02574146, Semigroup Forum 53 (1996), 317–320. (1996) Zbl0867.43002MR1406777DOI10.1007/BF02574146
  7. 10.1007/PL00005988, Semigroup Forum 57 (1998), 397–429. (1998) Zbl0923.47010MR1640879DOI10.1007/PL00005988
  8. 10.1023/A:1006511012031, Acta Math. Hungar. 79 (1998), 269–294. (1998) Zbl0909.20047MR1619811DOI10.1023/A:1006511012031
  9. Semiperfect countable -separative C -finite semigroups, Collect. Math. 52 (2001), 55–73. (2001) MR1833086
  10. 10.1007/s002330010062, Semigroup Forum 64 (2002), 243–264. (2002) Zbl1015.43005MR1876858DOI10.1007/s002330010062
  11. 10.1002/1522-2616(200203)236:1<31::AID-MANA31>3.0.CO;2-D, Math. Nachr. 236 (2002), 31–46. (2002) Zbl1015.43005MR1888556DOI10.1002/1522-2616(200203)236:1<31::AID-MANA31>3.0.CO;2-D
  12. Extensions of Herglotz’ Theorem, Comm. Math. Univ. Sct. Pauli 51 (2002), 195–215. (2002) Zbl1037.43006MR1955171
  13. 10.1023/A:1021783707324, Czechoslovak Math. J. 52(127) (2002), 155–196. (2002) Zbl1021.43003MR1885464DOI10.1023/A:1021783707324
  14. 10.7146/math.scand.a-14391, Math. Scand. 91 (2002), 285–319. (2002) Zbl1017.43004MR1931575DOI10.7146/math.scand.a-14391
  15. Unique disintegration of arbitrary positive definite functions on * -divisible semigroups, Math.  Z. 200 (1989), 511–525. (1989) MR0987584
  16. 10.7146/math.scand.a-14378, Math. Scand. 91 (2002), 55–66. (2002) MR1917681DOI10.7146/math.scand.a-14378
  17. The Algebraic Theory of Semigroups, Vol. I, Amer. Math. Soc., Providence, 1961. (1961) MR0132791
  18. Measure Theory, Springer-Verlag, Berlin, 1974. (1974) Zbl0283.28001
  19. 10.1007/BF01564869, Math. Ann. 81 (1920), 235–319. (1920) MR1511966DOI10.1007/BF01564869
  20. Über Potenzreihen mit positivem, reellen Teil im Einheitskreis, Ber. Verh. Königl. Sächs. Ges. Wiss. Leipzig, Math.-Phys.  Kl. 63 (1911), 501–511. (1911) 
  21. 10.1002/1522-2616(200008)216:1<155::AID-MANA155>3.0.CO;2-X, Math. Nachr. 216 (2000), 155–167. (2000) MR1774907DOI10.1002/1522-2616(200008)216:1<155::AID-MANA155>3.0.CO;2-X
  22. 10.1007/BF01420963, Math. Ann. 234 (1978), 125–138. (1978) Zbl0358.43003MR0481933DOI10.1007/BF01420963
  23. Über positive Funktionen auf einer Abelschen Gruppe, C. R.  (Doklady) Akad. Sci. URSS  (N.S.) 28 (1940), 294–295. (1940) MR0003459
  24. Positive definite functions on commutative groups with an invariant measure, C. R. (Doklady) Akad. Sci. URSS  (N.S.) 28 (1940), 296–300. (1940) MR0003460
  25. 10.14492/hokmj/1380892538, Hokkaido Math. J. 24 (1995), 113–125. (1995) MR1319033DOI10.14492/hokmj/1380892538
  26. 10.1002/mana.19790880130, Math. Nachr. 88 (1979), 385–390. (1979) MR0543417DOI10.1002/mana.19790880130
  27. The Problem of Moments, Amer. Math. Soc., Providence, 1943. (1943) MR0008438
  28. 10.5802/afst.108, Ann. Fac. Sci. Toulouse 8 (1894), 1–122. (1894) MR1508159DOI10.5802/afst.108
  29. Characters on inverse semigroups, Czechoslovak Math. J. 11 (1961), 150–154. (1961) MR0130315
  30. L’intégration dans les groupes topologiques et ses applications, Actual. Sci. Ind., No. 869 and 1145, Hermann et Cie., Paris (1940 and 1951). (1940 and 1951) MR0005741

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.