Projectability and splitting property of lattice ordered groups
Czechoslovak Mathematical Journal (2003)
- Volume: 53, Issue: 4, page 907-915
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topReferences
top- 10.1017/S1446788700018231, J. Austral. Math. Soc. 23 (1977), 247–256. (1977) MR0460207DOI10.1017/S1446788700018231
- 10.1112/jlms/s2-12.3.320, J. London Math. Soc. 12 (1976), 320–322. (1976) Zbl0333.06008MR0401579DOI10.1112/jlms/s2-12.3.320
- Orthocompletion of lattice ordered groups, Proc. London Math. Soc. 16 (1966), 107–130. (1966) MR0188113
- 10.1112/plms/s3-19.3.444, Proc. London Math. Soc. 19 (1969), 444–480. (1969) MR0244125DOI10.1112/plms/s3-19.3.444
- The essential closure of an archimedean lattice group, Duke Math. J. 38 (1971), 151–160. (1971) MR0277457
- Splitting property of lattice ordered groups, Czechoslovak Math. J. 24 (1974), 257–269. (1974) MR0349523
- Strongly projectable lattice ordered groups, Czechoslovak Math. J. 26 (1976), 642–652. (1976) MR0429690
- Orthogonal hull of a strongly projectable lattice ordered group, Czechoslovak Math. J. 28 (1978), 484–504. (1978) MR0505957
- Maximal Dedekind completion of an abelian lattice ordered group, Czechoslovak Math. J. 28 (1978), 611–631. (1978) MR0506435
- Projectable kernel of a lattice ordered group, Universal Algebra and Applications. Banach Center Publ. 9 (1982), 105–112. (1982) MR0738807
- 10.1023/A:1022419703077, Czechoslovak Math. J. 47 (1997), 511–523. (1997) MR1461430DOI10.1023/A:1022419703077
- 10.1023/A:1022849823068, Czechoslovak Math. J. 48 (1998), 359–363. (1998) MR1624264DOI10.1023/A:1022849823068
- 10.1023/A:1022491406886, Czechoslovak Math. J. 50 (2000), 431–444. (2000) MR1761399DOI10.1023/A:1022491406886
- Archimedean lattice ordered groups with the splitting property, Czechoslovak Math. J. 37 (1987), 7–18. (Russian) (1987) MR0875123