Description of simple exceptional sets in the unit ball

Piotr Kot

Czechoslovak Mathematical Journal (2004)

  • Volume: 54, Issue: 1, page 55-63
  • ISSN: 0011-4642

Abstract

top
For z B n , the boundary of the unit ball in n , let Λ ( z ) = { λ | λ | 1 } . If f 𝕆 ( B n ) then we call E ( f ) = { z B n Λ ( z ) | f ( z ) | 2 d Λ ( z ) = } the exceptional set for f . In this note we give a tool for describing such sets. Moreover we prove that if E is a G δ and F σ subset of the projective ( n - 1 ) -dimensional space n - 1 = ( n ) then there exists a holomorphic function f in the unit ball B n so that E ( f ) = E .

How to cite

top

Kot, Piotr. "Description of simple exceptional sets in the unit ball." Czechoslovak Mathematical Journal 54.1 (2004): 55-63. <http://eudml.org/doc/30836>.

@article{Kot2004,
abstract = {For $ z\in \partial B^n$, the boundary of the unit ball in $\mathbb \{C\}^n$, let $\Lambda (z)=\lbrace \lambda \:|\lambda |\le 1\rbrace $. If $ f\in \mathbb \{O\}(B^n)$ then we call $E(f)=\lbrace z\in \partial B^n\:\int _\{\Lambda (z)\}|f(z)|^2\mathrm \{d\}\Lambda (z)=\infty \rbrace $ the exceptional set for $f$. In this note we give a tool for describing such sets. Moreover we prove that if $E$ is a $G_\delta $ and $F_\sigma $ subset of the projective $(n-1)$-dimensional space $\mathbb \{P\}^\{n-1\}=\mathbb \{P\}(\mathbb \{C\}^n)$ then there exists a holomorphic function $f$ in the unit ball $B^n$ so that $E(f)=E$.},
author = {Kot, Piotr},
journal = {Czechoslovak Mathematical Journal},
keywords = {boundary behavior of power series; exceptional set; boundary behavior of power series; exceptional set},
language = {eng},
number = {1},
pages = {55-63},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Description of simple exceptional sets in the unit ball},
url = {http://eudml.org/doc/30836},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Kot, Piotr
TI - Description of simple exceptional sets in the unit ball
JO - Czechoslovak Mathematical Journal
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 1
SP - 55
EP - 63
AB - For $ z\in \partial B^n$, the boundary of the unit ball in $\mathbb {C}^n$, let $\Lambda (z)=\lbrace \lambda \:|\lambda |\le 1\rbrace $. If $ f\in \mathbb {O}(B^n)$ then we call $E(f)=\lbrace z\in \partial B^n\:\int _{\Lambda (z)}|f(z)|^2\mathrm {d}\Lambda (z)=\infty \rbrace $ the exceptional set for $f$. In this note we give a tool for describing such sets. Moreover we prove that if $E$ is a $G_\delta $ and $F_\sigma $ subset of the projective $(n-1)$-dimensional space $\mathbb {P}^{n-1}=\mathbb {P}(\mathbb {C}^n)$ then there exists a holomorphic function $f$ in the unit ball $B^n$ so that $E(f)=E$.
LA - eng
KW - boundary behavior of power series; exceptional set; boundary behavior of power series; exceptional set
UR - http://eudml.org/doc/30836
ER -

References

top
  1. Holomorphic functions which are highly nonintegrable at the boundary, Israel J. Math (to appear). (to appear) MR1749678
  2. Highly noncontinuable functions on convex domains, Bull. Sci. Math. 104 (1980), 417–439. (1980) MR0602409
  3. Holomorphic functions with highly noncontinuable boundary behavior, J. Anal. Math. 41 (1982), 211–216. (1982) MR0687952
  4. Highly noncontinuable functions on polynomially convex sets, Zeszyty Naukowe Uniwersytetu Jagiellonskiego 25 (1985), 95–107. (1985) Zbl0585.32012MR0837828
  5. Function Theory in the Unit Ball of  n , Springer, New York, 1980. (1980) MR0601594
  6. 10.4064/ap-65-3-245-251, Ann. Pol. Math. 65 (1997), 245–251. (1997) Zbl0872.32001MR1441179DOI10.4064/ap-65-3-245-251

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.