Boundary functions on a bounded balanced domain

Piotr Kot

Czechoslovak Mathematical Journal (2009)

  • Volume: 59, Issue: 2, page 371-379
  • ISSN: 0011-4642

Abstract

top
We solve the following Dirichlet problem on the bounded balanced domain Ω with some additional properties: For p > 0 and a positive lower semi-continuous function u on Ω with u ( z ) = u ( λ z ) for | λ | = 1 , z Ω we construct a holomorphic function f 𝕆 ( Ω ) such that u ( z ) = 𝔻 z | f | p d 𝔏 𝔻 z 2 for z Ω , where 𝔻 = { λ | λ | < 1 } .

How to cite

top

Kot, Piotr. "Boundary functions on a bounded balanced domain." Czechoslovak Mathematical Journal 59.2 (2009): 371-379. <http://eudml.org/doc/37929>.

@article{Kot2009,
abstract = {We solve the following Dirichlet problem on the bounded balanced domain $\Omega $ with some additional properties: For $p>0$ and a positive lower semi-continuous function $u$ on $\partial \Omega $ with $u(z)=u(\lambda z)$ for $|\lambda |=1$, $z\in \partial \Omega $ we construct a holomorphic function $f\in \mathbb \{O\}(\Omega )$ such that $u(z)=\int _\{\mathbb \{D\}z\}|f|^pd \mathfrak \{L\}_\{\mathbb \{D\}z\}^2$ for $z\in \partial \Omega $, where $\mathbb \{D\}=\lbrace \lambda \in \mathbb \{C\}\:|\lambda |<1\rbrace $.},
author = {Kot, Piotr},
journal = {Czechoslovak Mathematical Journal},
keywords = {boundary behavior of holomorphic functions; exceptional sets; boundary functions; Dirichlet problem; Radon inversion problem; boundary behavior; holomorphic function; exceptional set; boundary function; Dirichlet problem; Radon inversion problem},
language = {eng},
number = {2},
pages = {371-379},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Boundary functions on a bounded balanced domain},
url = {http://eudml.org/doc/37929},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Kot, Piotr
TI - Boundary functions on a bounded balanced domain
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 2
SP - 371
EP - 379
AB - We solve the following Dirichlet problem on the bounded balanced domain $\Omega $ with some additional properties: For $p>0$ and a positive lower semi-continuous function $u$ on $\partial \Omega $ with $u(z)=u(\lambda z)$ for $|\lambda |=1$, $z\in \partial \Omega $ we construct a holomorphic function $f\in \mathbb {O}(\Omega )$ such that $u(z)=\int _{\mathbb {D}z}|f|^pd \mathfrak {L}_{\mathbb {D}z}^2$ for $z\in \partial \Omega $, where $\mathbb {D}=\lbrace \lambda \in \mathbb {C}\:|\lambda |<1\rbrace $.
LA - eng
KW - boundary behavior of holomorphic functions; exceptional sets; boundary functions; Dirichlet problem; Radon inversion problem; boundary behavior; holomorphic function; exceptional set; boundary function; Dirichlet problem; Radon inversion problem
UR - http://eudml.org/doc/37929
ER -

References

top
  1. Globevnik, J., 10.1007/BF02810586, Isr. J. Math. 115 (2000), 195-203. (2000) Zbl0948.32015MR1749678DOI10.1007/BF02810586
  2. Jakóbczak, P., The exceptional sets for functions from the Bergman space, Port. Math. 50 (1993), 115-128. (1993) MR1300590
  3. Jakóbczak, P., 10.1007/BF02774034, Isr. J. Math. 97 (1997), 175-181. (1997) MR1441246DOI10.1007/BF02774034
  4. Jakóbczak, P., 10.4153/CMB-2001-019-7, Can. Math. Bull. 44 (2001), 150-159. (2001) MR1827853DOI10.4153/CMB-2001-019-7
  5. Kot, P., 10.1023/B:CMAJ.0000027246.96443.28, Czech. Math. J. 54 (2004), 55-63. (2004) Zbl1052.30006MR2040218DOI10.1023/B:CMAJ.0000027246.96443.28
  6. Kot, P., 10.1007/s10587-007-0041-0, Czech. Math. J. 57 (2007), 29-47. (2007) MR2309946DOI10.1007/s10587-007-0041-0
  7. Kot, P., 10.1090/S0002-9939-07-08939-3, Proc. Am. Math. Soc. 135 (2007), 3895-3903. (2007) Zbl1127.32005MR2341939DOI10.1090/S0002-9939-07-08939-3
  8. Kot, P., 10.1090/S0002-9939-08-09468-9, Proc. Amer. Math. Soc 137 (2009), 179-187. (2009) Zbl1157.32001MR2439439DOI10.1090/S0002-9939-08-09468-9

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.