Boundary functions in
Czechoslovak Mathematical Journal (2007)
- Volume: 57, Issue: 1, page 29-47
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKot, Piotr. "Boundary functions in $L^2H(\mathbb {B}^n)$." Czechoslovak Mathematical Journal 57.1 (2007): 29-47. <http://eudml.org/doc/31110>.
@article{Kot2007,
abstract = {We solve the Dirichlet problem for line integrals of holomorphic functions in the unit ball: For a function $u$ which is lower semi-continuous on $\partial \mathbb \{B\}^\{n\}$ we give necessary and sufficient conditions in order that there exists a holomorphic function $f\in \mathbb \{O\}(\mathbb \{B\}^\{n\})$ such that \[ u(z)=\int \_\{|\lambda |<1\}\left|f(\lambda z)\right|^\{2\}\mathrm \{d\}\{\mathfrak \{L\}\}^\{2\}(\lambda ). \]},
author = {Kot, Piotr},
journal = {Czechoslovak Mathematical Journal},
keywords = {boundary behavior of holomorphic functions; exceptional sets; boundary functions; computed tomography; Dirichlet problem; boundary behavior of holomorphic functions; exceptional sets; boundary functions; computed tomography; Dirichlet problem},
language = {eng},
number = {1},
pages = {29-47},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Boundary functions in $L^2H(\mathbb \{B\}^n)$},
url = {http://eudml.org/doc/31110},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Kot, Piotr
TI - Boundary functions in $L^2H(\mathbb {B}^n)$
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 1
SP - 29
EP - 47
AB - We solve the Dirichlet problem for line integrals of holomorphic functions in the unit ball: For a function $u$ which is lower semi-continuous on $\partial \mathbb {B}^{n}$ we give necessary and sufficient conditions in order that there exists a holomorphic function $f\in \mathbb {O}(\mathbb {B}^{n})$ such that \[ u(z)=\int _{|\lambda |<1}\left|f(\lambda z)\right|^{2}\mathrm {d}{\mathfrak {L}}^{2}(\lambda ). \]
LA - eng
KW - boundary behavior of holomorphic functions; exceptional sets; boundary functions; computed tomography; Dirichlet problem; boundary behavior of holomorphic functions; exceptional sets; boundary functions; computed tomography; Dirichlet problem
UR - http://eudml.org/doc/31110
ER -
References
top- Seminar on Complex Analysis at the Institute of Mathematics at Jagiellonian University, 1988. (1988)
- Mathematical problems in computed tomography, Proceedings of the 1999 Mathematical Geophysics Summerschool held at Stanford University. Published online at http:/cartan.stanford.edu/mgss/html/1999_proceedings.html, .
- Holomorphic functions which are highly nonintegrable at the boundary, Isr. J. Math. 115 (2000), 195–203. (2000) Zbl0948.32015MR1749678
- The exceptional sets for functions from the Bergman space, Port. Math. 50 (1993), 115–128. (1993) MR1300590
- 10.1080/17476939708814981, Theory Appl. 32 (1997), 89–97. (1997) MR1448482DOI10.1080/17476939708814981
- 10.1023/A:1022866501339, Czechoslovak Math. J. 47 (1997), 633–649. (1997) MR1479310DOI10.1023/A:1022866501339
- 10.1007/BF02774034, Isr. J. Math. 97 (1997), 175–181. (1997) DOI10.1007/BF02774034
- 10.4153/CMB-2001-019-7, Can. Math. Bull. 44 (2001), 150–159. (2001) MR1827853DOI10.4153/CMB-2001-019-7
- 10.1023/B:CMAJ.0000027246.96443.28, Czechoslovak Math. J. 54 (2004), 55–63. (2004) Zbl1052.30006MR2040218DOI10.1023/B:CMAJ.0000027246.96443.28
- oral communication, 4-th Symposium on Classical Analysis, Kazimierz, (1987). (1987)
- Function theory in the unit ball of , Springer, New York, 1980. (1980) MR0601594
- 10.4064/ap-65-3-245-251, Ann. Pol. Math. 65 (1997), 245–251. (1997) Zbl0872.32001MR1441179DOI10.4064/ap-65-3-245-251
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.