On the Henstock-Kurzweil integral for Riesz-space-valued functions defined on unbounded intervals
Antonio Boccuto; Beloslav Riečan
Czechoslovak Mathematical Journal (2004)
- Volume: 54, Issue: 3, page 591-607
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBoccuto, Antonio, and Riečan, Beloslav. "On the Henstock-Kurzweil integral for Riesz-space-valued functions defined on unbounded intervals." Czechoslovak Mathematical Journal 54.3 (2004): 591-607. <http://eudml.org/doc/30885>.
@article{Boccuto2004,
abstract = {In this paper we introduce and investigate a Henstock-Kurzweil-type integral for Riesz-space-valued functions defined on (not necessarily bounded) subintervals of the extended real line. We prove some basic properties, among them the fact that our integral contains under suitable hypothesis the generalized Riemann integral and that every simple function which vanishes outside of a set of finite Lebesgue measure is integrable according to our definition, and in this case our integral coincides with the usual one.},
author = {Boccuto, Antonio, Riečan, Beloslav},
journal = {Czechoslovak Mathematical Journal},
keywords = {Riesz spaces; Henstock-Kurzweil integral; Riesz spaces; Henstock-Kurzweil integral},
language = {eng},
number = {3},
pages = {591-607},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the Henstock-Kurzweil integral for Riesz-space-valued functions defined on unbounded intervals},
url = {http://eudml.org/doc/30885},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Boccuto, Antonio
AU - Riečan, Beloslav
TI - On the Henstock-Kurzweil integral for Riesz-space-valued functions defined on unbounded intervals
JO - Czechoslovak Mathematical Journal
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 3
SP - 591
EP - 607
AB - In this paper we introduce and investigate a Henstock-Kurzweil-type integral for Riesz-space-valued functions defined on (not necessarily bounded) subintervals of the extended real line. We prove some basic properties, among them the fact that our integral contains under suitable hypothesis the generalized Riemann integral and that every simple function which vanishes outside of a set of finite Lebesgue measure is integrable according to our definition, and in this case our integral coincides with the usual one.
LA - eng
KW - Riesz spaces; Henstock-Kurzweil integral; Riesz spaces; Henstock-Kurzweil integral
UR - http://eudml.org/doc/30885
ER -
References
top- Differential and integral calculus in Riesz spaces, Tatra Mt. Math. Publ. 14 (1998), 293–323. (1998) MR1651221
- On the Kurzweil-Stieltjes integral in ordered spaces, Tatra Mt. Math. Publ. 8 (1996), 133–141. (1996) MR1475272
- Topological Riesz Spaces and Measure Theory, Cambridge Univ. Press, 1994. (1994) MR0454575
- A direct proof of the Matthes-Wright integral extension theorem, J. London Math. Soc. 11 (1975), 276–284. (1975) Zbl0313.06016MR0380345
- The integral: An easy approach after Kurzweil and Henstock, Cambridge Univ. Press, 2000. (2000) MR1756319
- On the Kurzweil integral for functions with values in ordered spaces I, Acta Math. Univ. Comenian. 56–57 (1990), 75–83. (1990) MR1083014
- On operator valued measures in lattice ordered groups, Atti Sem. Mat. Fis. Univ. Modena 41 (1993), 235–238. (1993) MR1225686
- Integral, Measure and Ordering, Kluwer Academic Publishers/Ister Science, 1997. (1997) MR1489521
- On the Kurzweil integral for functions with values in ordered spaces II, Math. Slovaca 43 (1993), 471–475. (1993) MR1248980
- On integration with respect to operator valued measures in Riesz spaces, Tatra Mt. Math. Publ. 2 (1993), 149–165. (1993) MR1251049
- On the Kurzweil integral for functions with values in ordered spaces III, Tatra Mt. Math. Publ. 8 (1996), 93–100. (1996) MR1475267
- 10.1023/A:1022483929348, Czechoslovak Math. J. 48(123) (1998), 565–574. (1998) MR1637875DOI10.1023/A:1022483929348
- 10.5802/aif.393, Ann. Inst. Fourier Grenoble 21 (1971), 65–85. (1971) Zbl0215.48101MR0330411DOI10.5802/aif.393
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.