On prime modules over pullback rings

Shahabaddin Ebrahimi Atani

Czechoslovak Mathematical Journal (2004)

  • Volume: 54, Issue: 3, page 781-789
  • ISSN: 0011-4642

Abstract

top
First, we give a complete description of the indecomposable prime modules over a Dedekind domain. Second, if R is the pullback, in the sense of [9], of two local Dedekind domains then we classify indecomposable prime R -modules and establish a connection between the prime modules and the pure-injective modules (also representable modules) over such rings.

How to cite

top

Atani, Shahabaddin Ebrahimi. "On prime modules over pullback rings." Czechoslovak Mathematical Journal 54.3 (2004): 781-789. <http://eudml.org/doc/30900>.

@article{Atani2004,
abstract = {First, we give a complete description of the indecomposable prime modules over a Dedekind domain. Second, if $R$ is the pullback, in the sense of [9], of two local Dedekind domains then we classify indecomposable prime $R$-modules and establish a connection between the prime modules and the pure-injective modules (also representable modules) over such rings.},
author = {Atani, Shahabaddin Ebrahimi},
journal = {Czechoslovak Mathematical Journal},
keywords = {indecomposable prime modules; pullback rings; separated modules; indecomposable prime modules; pullback rings; separated modules},
language = {eng},
number = {3},
pages = {781-789},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On prime modules over pullback rings},
url = {http://eudml.org/doc/30900},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Atani, Shahabaddin Ebrahimi
TI - On prime modules over pullback rings
JO - Czechoslovak Mathematical Journal
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 3
SP - 781
EP - 789
AB - First, we give a complete description of the indecomposable prime modules over a Dedekind domain. Second, if $R$ is the pullback, in the sense of [9], of two local Dedekind domains then we classify indecomposable prime $R$-modules and establish a connection between the prime modules and the pure-injective modules (also representable modules) over such rings.
LA - eng
KW - indecomposable prime modules; pullback rings; separated modules; indecomposable prime modules; pullback rings; separated modules
UR - http://eudml.org/doc/30900
ER -

References

top
  1. Prime modules, Reine angew Math. 298 (1978), 156–181. (1978) Zbl0365.16002MR0498715
  2. ARRAY(0xa1e66e8), 1980, pp. 301–303. (1980) MR0584616
  3. Modules and Rings, Cambridge University Press, Cambridge, 1994. (1994) Zbl0817.16001MR1301329
  4. 10.1080/00927870008827074, Comm. Algebra 28 (2000), 4037–4069. (2000) Zbl0960.16002MR1772008DOI10.1080/00927870008827074
  5. I-Torsion-free modules over pullback rings, Honam Math. J. 22 (2000), 1–7. (2000) Zbl0973.16006MR1779194
  6. 10.1007/s10012-001-0001-9, South-east Asian Bulletin 25 (2001), 1–6. (2001) MR1832737DOI10.1007/s10012-001-0001-9
  7. 10.1081/AGB-120003982, Comm. Algebra 30 (2002), 2675–2685. (2002) Zbl1011.13004MR1908232DOI10.1081/AGB-120003982
  8. Modules over Valuation Domains, Lecture Notes in Pure and Applied Mathematics, 1985. (1985) MR0786121
  9. 10.1016/0021-8693(81)90106-X, J. Algebra 71 (1981), 50–61. (1981) Zbl0508.16008MR0627425DOI10.1016/0021-8693(81)90106-X
  10. 10.1016/0021-8693(81)90107-1, J. Algebra 71 (1981), 62–114. (1981) MR0627426DOI10.1016/0021-8693(81)90107-1
  11. Modules over Dedekind-like rings, J. Algebra 93 (1981), 1–116. (1981) MR0780485
  12. Prime submodules of modules, Comm. Univ. Sancti. Paulli 33 (1984), 61–69. (1984) Zbl0575.13005
  13. 10.1080/00927879508825430, Comm. Algebra 23 (1995), 3741–3752. (1995) Zbl0853.13011MR1348262DOI10.1080/00927879508825430
  14. Secondary representation of modules over a commutative ring, Symposia Matematica 11 (Istituto Nazionale di alta Matematica), Roma, 1973, pp. 23–43. (1973) Zbl0271.13001MR0342506
  15. Model Theory and Modules. London Math. Soc. Lecture Note Series, Cambridge University Press, 1988. (1988) MR0933092
  16. Prime modules, Honam Math. J. 18 (1996), 5–15. (1996) MR1402357
  17. The dual notion of prime submodules, Arch. Math. 37 (2001), 273–278. (2001) Zbl1090.13005MR1879449

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.