A note on -spaces and g -metrizable spaces

Zhaowen Li

Czechoslovak Mathematical Journal (2005)

  • Volume: 55, Issue: 3, page 803-808
  • ISSN: 0011-4642

Abstract

top
In this paper, we give the mapping theorems on -spaces and g -metrizable spaces by means of some sequence-covering mappings, mssc-mappings and π -mappings.

How to cite

top

Li, Zhaowen. "A note on $\aleph $-spaces and $g$-metrizable spaces." Czechoslovak Mathematical Journal 55.3 (2005): 803-808. <http://eudml.org/doc/30989>.

@article{Li2005,
abstract = {In this paper, we give the mapping theorems on $\aleph $-spaces and $g$-metrizable spaces by means of some sequence-covering mappings, mssc-mappings and $\pi $-mappings.},
author = {Li, Zhaowen},
journal = {Czechoslovak Mathematical Journal},
keywords = {$\aleph $-spaces; $g$-metrizable spaces; strong sequence-covering mappings; sequence-covering mappings; mssc-mappings; $\pi $-mappings; -spaces; -metrizable spaces; strong sequence-covering mappings; sequence-covering mappings; mssc-mappings},
language = {eng},
number = {3},
pages = {803-808},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on $\aleph $-spaces and $g$-metrizable spaces},
url = {http://eudml.org/doc/30989},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Li, Zhaowen
TI - A note on $\aleph $-spaces and $g$-metrizable spaces
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 3
SP - 803
EP - 808
AB - In this paper, we give the mapping theorems on $\aleph $-spaces and $g$-metrizable spaces by means of some sequence-covering mappings, mssc-mappings and $\pi $-mappings.
LA - eng
KW - $\aleph $-spaces; $g$-metrizable spaces; strong sequence-covering mappings; sequence-covering mappings; mssc-mappings; $\pi $-mappings; -spaces; -metrizable spaces; strong sequence-covering mappings; sequence-covering mappings; mssc-mappings
UR - http://eudml.org/doc/30989
ER -

References

top
  1. 10.1070/RM1966v021n04ABEH004169, Russian Math. Surveys 21 (1966), 115–162. (1966) MR0227950DOI10.1070/RM1966v021n04ABEH004169
  2. Locally countable collections, locally finite collections and Alexandroff’s problems, Acta Math. Sinica 37 (1994), 491–496. (Chinese) (1994) Zbl0812.54022MR1337096
  3. Generalized Metric Spaces and Mappings, Chinese Scientific publ., Beijing, 1995. (1995) 
  4. 10.2140/pjm.1984.110.59, Pacific J.  Math. 110 (1984), 59–63. (1984) Zbl0542.54030MR0722737DOI10.2140/pjm.1984.110.59
  5. General metric spaces  I, In: Topics in General Topology, North-Holland, Amsterdam, 1989. (1989) MR1053200
  6. Sequence-covering and countably bi-quotient mappings, Gen. Top. Appl. 1 (1971), 143–154. (1971) Zbl0218.54016MR0288737
  7. Symmetric spaces, g -developable spaces and g -metrizable spaces, Math. Japonica 36 (1991), 71–84. (1991) Zbl0732.54023MR1093356
  8. 10.2140/pjm.1974.52.233, Pacific J.  Math. 52 (1974), 233–245. (1974) Zbl0285.54022MR0350706DOI10.2140/pjm.1974.52.233
  9. 10.2140/pjm.1984.113.303, Pacific J.  Math. 113 (1984), 303–332. (1984) MR0749538DOI10.2140/pjm.1984.113.303
  10. Axioms of countability and continuous mappings, Bull. Pol. Acad. Math. 8 (1960), 127–133. (1960) MR0116314
  11. On paracompactness in function spaces with the compact-open topology, Proc. Amer. Math. Soc. 29 (1971), 183–189. (1971) MR0276919
  12. 10.4064/fm-57-1-91-96, Fund. Math. 57 (1965), 91–96. (1965) Zbl0134.41802MR0179763DOI10.4064/fm-57-1-91-96
  13. On a new class of spaces and some problems of symmetrizability theory, Soviet Math. Dokl. 10 (1969), 845–848. (1969) Zbl0202.53702
  14. 10.1090/S0002-9939-1972-0290328-3, Proc. Amer. Math. Soc. 33 (1972), 161–164. (1972) Zbl0233.54015MR0290328DOI10.1090/S0002-9939-1972-0290328-3
  15. 10.2140/pjm.1976.65.113, Pacific J.  Math. 65 (1976), 113–118. (1976) Zbl0359.54022MR0423307DOI10.2140/pjm.1976.65.113
  16. 10.2140/pjm.1982.98.327, Pacific J.  Math. 98 (1982), 327–332. (1982) Zbl0478.54025MR0650013DOI10.2140/pjm.1982.98.327
  17. 10.1016/S0166-8641(97)00031-X, Topology Appl. 81 (1997), 185–196. (1997) Zbl0885.54019MR1485766DOI10.1016/S0166-8641(97)00031-X
  18. On g -metrizable spaces, Chinese Ann. Math. 13 (1992), 403–409. (1992) Zbl0770.54030MR1190593
  19. g -metrizability and S ω , Topology Appl. 60 (1994), 185–189. (1994) MR1302472
  20. σ -hereditarily closure-preserving k -networks and g -metrizability, Proc. Amer. Math. Soc. 112 (1991), 283–290. (1991) Zbl0770.54031MR1049850
  21. 10.4153/CJM-1951-022-3, Canad. J.  Math. 3 (1951), 175–186. (1951) Zbl0042.41301MR0043449DOI10.4153/CJM-1951-022-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.