g -metrizable spaces and the images of semi-metric spaces

Ying Ge; Shou Lin

Czechoslovak Mathematical Journal (2007)

  • Volume: 57, Issue: 4, page 1141-1149
  • ISSN: 0011-4642

Abstract

top
In this paper, we prove that a space X is a g -metrizable space if and only if X is a weak-open, π and σ -image of a semi-metric space, if and only if X is a strong sequence-covering, quotient, π and m s s c -image of a semi-metric space, where “semi-metric” can not be replaced by “metric”.

How to cite

top

Ge, Ying, and Lin, Shou. "$g$-metrizable spaces and the images of semi-metric spaces." Czechoslovak Mathematical Journal 57.4 (2007): 1141-1149. <http://eudml.org/doc/31186>.

@article{Ge2007,
abstract = {In this paper, we prove that a space $X$ is a $g$-metrizable space if and only if $X$ is a weak-open, $\pi $ and $\sigma $-image of a semi-metric space, if and only if $X$ is a strong sequence-covering, quotient, $\pi $ and $mssc$-image of a semi-metric space, where “semi-metric” can not be replaced by “metric”.},
author = {Ge, Ying, Lin, Shou},
journal = {Czechoslovak Mathematical Journal},
keywords = {$g$-metrizable spaces; $sn$-metrizable spaces; weak-open mappings; strong sequence-covering mappings; quotient mappings; $\pi $-mappings; $\sigma $-mappings; $mssc$-mappings; -metrizable spaces; weak-open mappings},
language = {eng},
number = {4},
pages = {1141-1149},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$g$-metrizable spaces and the images of semi-metric spaces},
url = {http://eudml.org/doc/31186},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Ge, Ying
AU - Lin, Shou
TI - $g$-metrizable spaces and the images of semi-metric spaces
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 4
SP - 1141
EP - 1149
AB - In this paper, we prove that a space $X$ is a $g$-metrizable space if and only if $X$ is a weak-open, $\pi $ and $\sigma $-image of a semi-metric space, if and only if $X$ is a strong sequence-covering, quotient, $\pi $ and $mssc$-image of a semi-metric space, where “semi-metric” can not be replaced by “metric”.
LA - eng
KW - $g$-metrizable spaces; $sn$-metrizable spaces; weak-open mappings; strong sequence-covering mappings; quotient mappings; $\pi $-mappings; $\sigma $-mappings; $mssc$-mappings; -metrizable spaces; weak-open mappings
UR - http://eudml.org/doc/31186
ER -

References

top
  1. Mappings and spaces, Russian Math. Surveys 21 (1966), 115–162. (1966) MR0227950
  2. Sequentially quotient mappings, Czech. Math. J. 26 (1976), 174–182. (1976) MR0402689
  3. General Topology (revised and completed edition), Heldermann-Verlag, Berlin, 1989. (1989) MR1039321
  4. 10.4064/fm-57-1-107-115, Fund. Math. 57 (1965), 107–115. (1965) Zbl0132.17802MR0180954DOI10.4064/fm-57-1-107-115
  5. On s n -metrizable spaces, Acta Math. Sinica 45 (2002), 355–360. (2002) Zbl1010.54027MR1928146
  6. 10.2298/PIM0374121G, Publ. Inst. Math., Nouv. Ser. 74 (2003), 121–128. (2003) MR2066998DOI10.2298/PIM0374121G
  7. 10.1016/S0166-8641(01)00145-6, Topology Appl. 122 (2002), 237–252. (2002) MR1919303DOI10.1016/S0166-8641(01)00145-6
  8. 10.1023/A:1026208025139, Czech. Math. J. 53 (2003), 491–495. (2003) Zbl1026.54026MR1983468DOI10.1023/A:1026208025139
  9. 10.1007/s10587-005-0066-1, Czech. Math. J. 55 (2005), 803–808. (2005) Zbl1081.54525MR2153103DOI10.1007/s10587-005-0066-1
  10. 10.1023/B:CMAJ.0000042377.80659.fb, Czech. Math. J. 54 (2004), 393–400. (2004) MR2059259DOI10.1023/B:CMAJ.0000042377.80659.fb
  11. Point-Countable Covers and Sequence-Covering Mappings, Chinese Science Press, Beijing, 2002. (2002) Zbl1004.54001MR1939779
  12. 10.1016/S0166-8641(99)00163-7, Topology Appl. 109 (2001), 301–314. (2001) MR1807392DOI10.1016/S0166-8641(99)00163-7
  13. Notes on c f p -covers, Comment. Math. Univ. Carolinae 44 (2003), 295–306. (2003) MR2026164
  14. Generalized metric spaces I, Topics in General Topology, North-Holland, Amsterdam, 1989, pp. 313–366. (1989) Zbl0698.54023MR1053200
  15. Axioms of countability and continuous mappings, Bull Pol. Acad Math. 8 (1960), 127–134. (1960) MR0116314
  16. 10.1016/0016-660X(71)90120-6, General Topology Appl. 1 (1971), 143–154. (1971) Zbl0218.54016MR0288737DOI10.1016/0016-660X(71)90120-6
  17. 10.2140/pjm.1974.52.233, Pacific J. Math. 52 (1974), 233–245. (1974) Zbl0285.54022MR0350706DOI10.2140/pjm.1974.52.233
  18. Symmetric spaces, g -developable spaces and g -metrizable spaces, Math. Japonica 36 (1991), 71–84. (1991) Zbl0732.54023MR1093356
  19. Certain covering-maps and k -networks, and related matters, Topology Proc. 27 (2003), 317–334. (2003) MR2048941
  20. Characterizations of certain g -first countable spaces, Chinese Adv. Math. 29 (2000), 61–64. (Chinese) (2000) Zbl0999.54010MR1769127

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.