-metrizable spaces and the images of semi-metric spaces
Czechoslovak Mathematical Journal (2007)
- Volume: 57, Issue: 4, page 1141-1149
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGe, Ying, and Lin, Shou. "$g$-metrizable spaces and the images of semi-metric spaces." Czechoslovak Mathematical Journal 57.4 (2007): 1141-1149. <http://eudml.org/doc/31186>.
@article{Ge2007,
abstract = {In this paper, we prove that a space $X$ is a $g$-metrizable space if and only if $X$ is a weak-open, $\pi $ and $\sigma $-image of a semi-metric space, if and only if $X$ is a strong sequence-covering, quotient, $\pi $ and $mssc$-image of a semi-metric space, where “semi-metric” can not be replaced by “metric”.},
author = {Ge, Ying, Lin, Shou},
journal = {Czechoslovak Mathematical Journal},
keywords = {$g$-metrizable spaces; $sn$-metrizable spaces; weak-open mappings; strong sequence-covering mappings; quotient mappings; $\pi $-mappings; $\sigma $-mappings; $mssc$-mappings; -metrizable spaces; weak-open mappings},
language = {eng},
number = {4},
pages = {1141-1149},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$g$-metrizable spaces and the images of semi-metric spaces},
url = {http://eudml.org/doc/31186},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Ge, Ying
AU - Lin, Shou
TI - $g$-metrizable spaces and the images of semi-metric spaces
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 4
SP - 1141
EP - 1149
AB - In this paper, we prove that a space $X$ is a $g$-metrizable space if and only if $X$ is a weak-open, $\pi $ and $\sigma $-image of a semi-metric space, if and only if $X$ is a strong sequence-covering, quotient, $\pi $ and $mssc$-image of a semi-metric space, where “semi-metric” can not be replaced by “metric”.
LA - eng
KW - $g$-metrizable spaces; $sn$-metrizable spaces; weak-open mappings; strong sequence-covering mappings; quotient mappings; $\pi $-mappings; $\sigma $-mappings; $mssc$-mappings; -metrizable spaces; weak-open mappings
UR - http://eudml.org/doc/31186
ER -
References
top- Mappings and spaces, Russian Math. Surveys 21 (1966), 115–162. (1966) MR0227950
- Sequentially quotient mappings, Czech. Math. J. 26 (1976), 174–182. (1976) MR0402689
- General Topology (revised and completed edition), Heldermann-Verlag, Berlin, 1989. (1989) MR1039321
- 10.4064/fm-57-1-107-115, Fund. Math. 57 (1965), 107–115. (1965) Zbl0132.17802MR0180954DOI10.4064/fm-57-1-107-115
- On -metrizable spaces, Acta Math. Sinica 45 (2002), 355–360. (2002) Zbl1010.54027MR1928146
- 10.2298/PIM0374121G, Publ. Inst. Math., Nouv. Ser. 74 (2003), 121–128. (2003) MR2066998DOI10.2298/PIM0374121G
- 10.1016/S0166-8641(01)00145-6, Topology Appl. 122 (2002), 237–252. (2002) MR1919303DOI10.1016/S0166-8641(01)00145-6
- 10.1023/A:1026208025139, Czech. Math. J. 53 (2003), 491–495. (2003) Zbl1026.54026MR1983468DOI10.1023/A:1026208025139
- 10.1007/s10587-005-0066-1, Czech. Math. J. 55 (2005), 803–808. (2005) Zbl1081.54525MR2153103DOI10.1007/s10587-005-0066-1
- 10.1023/B:CMAJ.0000042377.80659.fb, Czech. Math. J. 54 (2004), 393–400. (2004) MR2059259DOI10.1023/B:CMAJ.0000042377.80659.fb
- Point-Countable Covers and Sequence-Covering Mappings, Chinese Science Press, Beijing, 2002. (2002) Zbl1004.54001MR1939779
- 10.1016/S0166-8641(99)00163-7, Topology Appl. 109 (2001), 301–314. (2001) MR1807392DOI10.1016/S0166-8641(99)00163-7
- Notes on -covers, Comment. Math. Univ. Carolinae 44 (2003), 295–306. (2003) MR2026164
- Generalized metric spaces I, Topics in General Topology, North-Holland, Amsterdam, 1989, pp. 313–366. (1989) Zbl0698.54023MR1053200
- Axioms of countability and continuous mappings, Bull Pol. Acad Math. 8 (1960), 127–134. (1960) MR0116314
- 10.1016/0016-660X(71)90120-6, General Topology Appl. 1 (1971), 143–154. (1971) Zbl0218.54016MR0288737DOI10.1016/0016-660X(71)90120-6
- 10.2140/pjm.1974.52.233, Pacific J. Math. 52 (1974), 233–245. (1974) Zbl0285.54022MR0350706DOI10.2140/pjm.1974.52.233
- Symmetric spaces, -developable spaces and -metrizable spaces, Math. Japonica 36 (1991), 71–84. (1991) Zbl0732.54023MR1093356
- Certain covering-maps and -networks, and related matters, Topology Proc. 27 (2003), 317–334. (2003) MR2048941
- Characterizations of certain -first countable spaces, Chinese Adv. Math. 29 (2000), 61–64. (Chinese) (2000) Zbl0999.54010MR1769127
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.