Strong projectability of lattice ordered groups

Ján Jakubík

Czechoslovak Mathematical Journal (2005)

  • Volume: 55, Issue: 4, page 957-973
  • ISSN: 0011-4642

Abstract

top
In this paper we prove that the lateral completion of a projectable lattice ordered group is strongly projectable. Further, we deal with some properties of Specker lattice ordered groups which are related to lateral completeness and strong projectability.

How to cite

top

Jakubík, Ján. "Strong projectability of lattice ordered groups." Czechoslovak Mathematical Journal 55.4 (2005): 957-973. <http://eudml.org/doc/31003>.

@article{Jakubík2005,
abstract = {In this paper we prove that the lateral completion of a projectable lattice ordered group is strongly projectable. Further, we deal with some properties of Specker lattice ordered groups which are related to lateral completeness and strong projectability.},
author = {Jakubík, Ján},
journal = {Czechoslovak Mathematical Journal},
keywords = {Lattice ordered group; projectability; strong projectability; lateral completion; orthocompletion; Specker lattice ordered group; lattice-ordered group; projectability; strong projectability; lateral completion; orthocompletion; Specker lattice-ordered group},
language = {eng},
number = {4},
pages = {957-973},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Strong projectability of lattice ordered groups},
url = {http://eudml.org/doc/31003},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Jakubík, Ján
TI - Strong projectability of lattice ordered groups
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 4
SP - 957
EP - 973
AB - In this paper we prove that the lateral completion of a projectable lattice ordered group is strongly projectable. Further, we deal with some properties of Specker lattice ordered groups which are related to lateral completeness and strong projectability.
LA - eng
KW - Lattice ordered group; projectability; strong projectability; lateral completion; orthocompletion; Specker lattice ordered group; lattice-ordered group; projectability; strong projectability; lateral completion; orthocompletion; Specker lattice-ordered group
UR - http://eudml.org/doc/31003
ER -

References

top
  1. 10.1017/S1446788700031463, J.  Austral. Math. Soc. 19 (1975), 263–289. (1975) Zbl0314.06011MR0384640DOI10.1017/S1446788700031463
  2. 10.1112/jlms/s2-12.3.320, J.  London Math. Soc. 12 (1976), 320–322. (1976) Zbl0333.06008MR0401579DOI10.1112/jlms/s2-12.3.320
  3. 10.4153/CJM-1974-081-x, Canadian J.  Math. 26 (1974), 866–878. (1974) MR0345891DOI10.4153/CJM-1974-081-x
  4. 10.1016/1385-7258(76)90000-7, Indagationes Math. 38 (1976), 1–7. (1976) Zbl0329.06013MR0401581DOI10.1016/1385-7258(76)90000-7
  5. 10.1112/jlms/s2-1.1.358, J.  London Math. Soc. 1 (1969), 358–362. (1969) MR0249339DOI10.1112/jlms/s2-1.1.358
  6. Representation of the projectable and strongly projectable hulls of a lattice ordered group, Proc. Amer. Math. Soc. 19 (1975), 263–289. (1975) MR0295990
  7. 10.1112/plms/s3-19.3.444, Proc. London Math. Soc. 19 (1969), 444–480. (1969) MR0244125DOI10.1112/plms/s3-19.3.444
  8. Lattice Ordered Groups, Tulane University, 1970. (1970) Zbl0258.06011
  9. 10.1017/S1446788700015391, J.  Austral. Math. Soc. 16 (1973), 385–415. (1973) MR0344173DOI10.1017/S1446788700015391
  10. Epi-Archimedean -groups, Czechoslovak Math.  J. 24 (1974), 192–218. (1974) MR0347701
  11. 10.1023/A:1006075129584, Order 14 (1998), 295–319. (1998) MR1644504DOI10.1023/A:1006075129584
  12. The Theory of Lattice Ordered Groups, Marcel Dekker, New York-Basel, 1995. (1995) MR1304052
  13. Representations and extensions of -groups, Czechoslovak Math.  J. 13 (1963), 267–282. (Russian) (1963) 
  14. 10.1023/A:1022419703077, Czechoslovak Math.  J 47 (1997), 511–523. (1997) MR1461430DOI10.1023/A:1022419703077
  15. Orthogonal hull of a strongly projectable lattice ordered group, Czechoslovak Math.  J. 28 (1978), 484–504. (1978) MR0505957
  16. 10.1023/A:1021711326115, Czechoslovak Math.  J. 52 (2002), 469–482. (2002) MR1923254DOI10.1023/A:1021711326115
  17. Konvexe Ketten in -Gruppen, Čas. pěst. mat. 84 (1959), 53–63. (1959) MR0104740
  18. Représentation de groupes et d’anneaux réticulés par des sections dans des faisceaux, PhD. Thesis, Université de Paris, 1970. (1970) Zbl0249.06002
  19. On some kinds of completeness in archimedean lattice ordered groups, Funkc. anal. 9 (1977), 138–143. (Russian) (1977) 
  20. Boolean Algebras, Second Edition, Springer-Verlag, Berlin, 1964. (1964) Zbl0123.01303MR0126393
  21. 10.1090/S0002-9947-1957-0084466-4, Trans. Amer. Math. Soc. 84 (1957), 230–257. (1957) MR0084466DOI10.1090/S0002-9947-1957-0084466-4

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.