Torsion classes of Specker lattice ordered groups

Ján Jakubík

Czechoslovak Mathematical Journal (2002)

  • Volume: 52, Issue: 3, page 469-482
  • ISSN: 0011-4642

Abstract

top
In this paper we investigate the relations between torsion classes of Specker lattice ordered groups and torsion classes of generalized Boolean algebras.

How to cite

top

Jakubík, Ján. "Torsion classes of Specker lattice ordered groups." Czechoslovak Mathematical Journal 52.3 (2002): 469-482. <http://eudml.org/doc/30717>.

@article{Jakubík2002,
abstract = {In this paper we investigate the relations between torsion classes of Specker lattice ordered groups and torsion classes of generalized Boolean algebras.},
author = {Jakubík, Ján},
journal = {Czechoslovak Mathematical Journal},
keywords = {Specker lattice ordered group; generalized Boolean algebra; torsion class; Specker lattice ordered group; generalized Boolean algebra; torsion class},
language = {eng},
number = {3},
pages = {469-482},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Torsion classes of Specker lattice ordered groups},
url = {http://eudml.org/doc/30717},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Jakubík, Ján
TI - Torsion classes of Specker lattice ordered groups
JO - Czechoslovak Mathematical Journal
PY - 2002
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 52
IS - 3
SP - 469
EP - 482
AB - In this paper we investigate the relations between torsion classes of Specker lattice ordered groups and torsion classes of generalized Boolean algebras.
LA - eng
KW - Specker lattice ordered group; generalized Boolean algebra; torsion class; Specker lattice ordered group; generalized Boolean algebra; torsion class
UR - http://eudml.org/doc/30717
ER -

References

top
  1. Lattice Theory, Third Edition, Providence, 1967. (1967) Zbl0153.02501MR0227053
  2. Lattice Ordered Groups, Tulane University, 1970. (1970) Zbl0258.06011
  3. 10.1090/S0002-9947-1992-1031238-0, Trans. Amer. Math. Soc. 330 (1992), 575–598. (1992) MR1031238DOI10.1090/S0002-9947-1992-1031238-0
  4. 10.1023/A:1006075129584, Order 14 (1998), 295–319. (1998) MR1644504DOI10.1023/A:1006075129584
  5. 10.1023/A:1013759300701, Czechoslovak Math. J 51 (2001), 395–413. (2001) MR1844319DOI10.1023/A:1013759300701
  6. The completion of an -group, J. Austral. Math. Soc. 9 (1969), 182–208. (1969) MR0249340
  7. 10.1007/BF01190779, Algebra Universalis 29 (1992), 521–545. (1992) MR1201177DOI10.1007/BF01190779
  8. Remarks on lattice ordered groups and vector lattices. I. Carathéodory functions, Trans. Amer. Math. Soc. 88 (1958), 107–120. (1958) MR0097331
  9. 10.4064/fm-74-2-85-98, Fund. Math. 74 (1972), 85–98. (1972) MR0302528DOI10.4064/fm-74-2-85-98
  10. Radical mappings and radical classes of lattice ordered groups, Symposia Math. 21, Academic Press, New York-London, 1977, pp. 451–477. (1977) MR0491397
  11. 10.1023/A:1022885303504, Czechoslovak Math. J. 48 (1998), 253–268. (1998) MR1624315DOI10.1023/A:1022885303504
  12. Radical classes of complete lattice ordered groups, Math. Slovaca 49 (1999), 417–424. (1999) MR1719676
  13. Torsion theory for lattice ordered groups, Czechoslovak Math. J. 25 (1975), 284–299. (1975) Zbl0321.06020MR0389705

Citations in EuDML Documents

top
  1. Ján Jakubík, On vector lattices of elementary Carathéodory functions
  2. Ján Jakubík, Strong projectability of lattice ordered groups
  3. Ján Jakubík, Subdirect decompositions and the radical of a generalized Boolean algebra extension of a lattice ordered group
  4. Ján Jakubík, On Carathéodory vector lattices
  5. Ján Jakubík, Torsion classes and subdirect products of Carathéodory vector lattices
  6. Ján Jakubík, On some types of radical classes
  7. Ján Jakubík, Isomorphisms of direct products of lattice-ordered groups

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.