Extensions of partially ordered partial abelian monoids

Sylvia Pulmannová

Czechoslovak Mathematical Journal (2006)

  • Volume: 56, Issue: 1, page 155-178
  • ISSN: 0011-4642

Abstract

top
The notion of a partially ordered partial abelian monoid is introduced and extensions of partially ordered abelian monoids by partially ordered abelian groups are studied. Conditions for the extensions to exist are found. The cases when both the above mentioned structures have the Riesz decomposition property, or are lattice ordered, are treated. Some applications to effect algebras and MV-algebras are shown.

How to cite

top

Pulmannová, Sylvia. "Extensions of partially ordered partial abelian monoids." Czechoslovak Mathematical Journal 56.1 (2006): 155-178. <http://eudml.org/doc/31022>.

@article{Pulmannová2006,
abstract = {The notion of a partially ordered partial abelian monoid is introduced and extensions of partially ordered abelian monoids by partially ordered abelian groups are studied. Conditions for the extensions to exist are found. The cases when both the above mentioned structures have the Riesz decomposition property, or are lattice ordered, are treated. Some applications to effect algebras and MV-algebras are shown.},
author = {Pulmannová, Sylvia},
journal = {Czechoslovak Mathematical Journal},
keywords = {abelian partially ordered groups; partially ordered partial abelian monoids; effect algebras; MV-algebras; Riesz decomposition properties; short exact sequences; extensions; abelian partially ordered groups; partially ordered partial abelian monoids; effect algebras},
language = {eng},
number = {1},
pages = {155-178},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Extensions of partially ordered partial abelian monoids},
url = {http://eudml.org/doc/31022},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Pulmannová, Sylvia
TI - Extensions of partially ordered partial abelian monoids
JO - Czechoslovak Mathematical Journal
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 1
SP - 155
EP - 178
AB - The notion of a partially ordered partial abelian monoid is introduced and extensions of partially ordered abelian monoids by partially ordered abelian groups are studied. Conditions for the extensions to exist are found. The cases when both the above mentioned structures have the Riesz decomposition property, or are lattice ordered, are treated. Some applications to effect algebras and MV-algebras are shown.
LA - eng
KW - abelian partially ordered groups; partially ordered partial abelian monoids; effect algebras; MV-algebras; Riesz decomposition properties; short exact sequences; extensions; abelian partially ordered groups; partially ordered partial abelian monoids; effect algebras
UR - http://eudml.org/doc/31022
ER -

References

top
  1. 10.2307/1968871, Ann. Math. 43 (1942), 298–331. (1942) Zbl0060.05808MR0006550DOI10.2307/1968871
  2. 10.1090/S0002-9947-1958-0094302-9, Trans. Amer. Math. Soc. 88 (1958), 467–490. (1958) MR0094302DOI10.1090/S0002-9947-1958-0094302-9
  3. A new proof of the completeness of the Lukasziewicz axioms, Trans. Amer. Math. Soc. 93 (1959), 74–80. (1959) MR0122718
  4. Universal Algebra, Harper and Row Publishers, New York, Evaston, London, 1965. (1965) Zbl0141.01002MR0175948
  5. Algebraic foundation of many-valued reasoning, Kluwer, Dordrecht, 2000. (2000) MR1786097
  6. 10.1006/jabr.1996.0278, J. Algebra 184 (1996), 604–612. (1996) MR1409232DOI10.1006/jabr.1996.0278
  7. 10.1023/A:1006423311104, Order 17 (2000), 75–92. (2000) MR1776935DOI10.1023/A:1006423311104
  8. New Trends in Quantum Structures, Kluwer, Dordrecht, 2000. (2000) MR1861369
  9. 10.2307/2371690, Amer. J. Math. 64 (1942), 363–370. (1942) Zbl0060.07601MR0006996DOI10.2307/2371690
  10. A survey of partial grupoids, In: Properties of Semigroups (Lyapin, E. S., ed.), Gos. Ped. Inst. Leningrad (1984), 39–76. (Russian) (1984) MR0796886
  11. Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994), 1325–1346. (1994) MR1304942
  12. 10.1007/BF02022558, Acta Math. Acad. Sci. Hungar. 1 (1950), 118–124. (1950) MR0044544DOI10.1007/BF02022558
  13. Riesz groups, Ann. Scuola norm sup. Pisa 19 (1965), 1–34. (1965) Zbl0125.28703MR0180609
  14. 10.1023/A:1026605020810, Internat. J. Theor. Phys. 37 (1998), 39–43. (1998) MR1637147DOI10.1023/A:1026605020810
  15. Partially Ordered Abelian Groups with Interpolation, American Mathematical Society, Providence, Rhode Island, 1986. (1986) Zbl0589.06008MR0845783
  16. Stenosis in dimension groups and QF C*-algebras, J. Reine Angew. Math. 332 (1982), 1–98. (1982) MR0656856
  17. 10.1007/s000120050061, Algebra Universalis 38 (1997), 395–421. (1997) MR1626347DOI10.1007/s000120050061
  18. The Theory of Groups, New york, 1959. (1959) Zbl0084.02202MR0103215
  19. Extensions for AF C*-algebras and dimension groups, Trans. Amer. Math. Soc. 271 (1982), 537–573. (1982) Zbl0517.46051MR0654850
  20. Generalized difference posets and orthoalgebras, Acta Math. Univ. Comenianae 45 (1996), 247–279. (1996) MR1451174
  21. 10.1007/s00012-002-8199-7, Algebra Universalis 47 (2002), 443–477. (2002) MR1923079DOI10.1007/s00012-002-8199-7
  22. D-posets, Math. Slovaca 44 (1994), 21–34. (1994) MR1290269
  23. Partial Grupoids, Ross. Gos. Ped. Inst. St.-Petersburg, 1991. (Russian) (1991) 
  24. 10.1007/BF01219655, Commun. Math. Phys. 124 (1989), 337–364. (1989) MR1012630DOI10.1007/BF01219655
  25. 10.1016/0022-1236(86)90015-7, J. Funct. Anal. 65 (1986), 15–63. (1986) MR0819173DOI10.1016/0022-1236(86)90015-7
  26. C*-algebras and Operator Theory, Academic Press, INC., Boston, 1990. (1990) MR1074574
  27. 10.1007/BF00676276, Internat. J. Theor. Phys. 34 (1995), 1637–1642. (1995) DOI10.1007/BF00676276
  28. 10.1006/jabr.1996.0342, J. Algebra 185 (1996), 605–620. (1996) MR1419715DOI10.1006/jabr.1996.0342
  29. Abelian extensions of difference sets, Tatra Mt. Math. Publ. 22 (2001), 179–196. (2001) MR1889044
  30. 10.1007/s000120050007, Algebra Universalis 37 (1997), 119–140. (1997) MR1427571DOI10.1007/s000120050007
  31. On a structure theory of effect algebras, PhD thesis, Kansas State Univ., Manhattan, Kansas, 1996. (1996) 
  32. Minimal clans: A class of ordered partial semigroups including Boolean rings and lattice-ordered groups, In: Semigroups-Theory and Applications (Oberwolfach 1986) LNM 1320, Springer-Verlag, Berlin, Heidelberg, New York, 1988, pp. 300–341. (1988) Zbl0664.06010MR0957778
  33. 10.1007/BF01694897, Monatshefte Math. Phys. 34 (1926), 165–180. (1926) MR1549403DOI10.1007/BF01694897
  34. 10.2140/pjm.1964.14.709, Pacific J. Math. 14 (1964), 709–718. (1964) Zbl0122.27904MR0163970DOI10.2140/pjm.1964.14.709
  35. 10.1007/BF00676295, Internat. J. Theor. Phys. 34 (1995), 1807–1812. (1995) Zbl0839.03047MR1353727DOI10.1007/BF00676295

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.