# Removable singularities for weighted Bergman spaces

Czechoslovak Mathematical Journal (2006)

- Volume: 56, Issue: 1, page 179-227
- ISSN: 0011-4642

## Access Full Article

top## Abstract

top## How to cite

topBjörn, Anders. "Removable singularities for weighted Bergman spaces." Czechoslovak Mathematical Journal 56.1 (2006): 179-227. <http://eudml.org/doc/31023>.

@article{Björn2006,

abstract = {We develop a theory of removable singularities for the weighted Bergman space $\{\mathcal \{A\}\}^p_\mu (\Omega )=\lbrace f \text\{analytic\} \text\{in\} \Omega \: \int _\Omega |f|^p \mathrm \{d\}\mu < \infty \rbrace $, where $\mu $ is a Radon measure on $\mathbb \{C\}$. The set $A$ is weakly removable for $\{\mathcal \{A\}\}^p_\mu (\Omega \setminus A)$ if $\{\mathcal \{A\}\}^p_\mu (\Omega \setminus A) \subset \text\{Hol\}(\Omega )$, and strongly removable for $\{\mathcal \{A\}\}^p_\mu (\Omega \setminus A)$ if $\{\mathcal \{A\}\}^p_\mu (\Omega \setminus A) = \{\mathcal \{A\}\}^p_\mu (\Omega )$. The general theory developed is in many ways similar to the theory of removable singularities for Hardy $H^p$ spaces, $\mathop \{\mathrm \{B\}MO\}$ and locally Lipschitz spaces of analytic functions, including the existence of counterexamples to many plausible properties, e.g. the union of two compact removable singularities needs not be removable. In the case when weak and strong removability are the same for all sets, in particular if $\mu $ is absolutely continuous with respect to the Lebesgue measure $m$, we are able to say more than in the general case. In this case we obtain a Dolzhenko type result saying that a countable union of compact removable singularities is removable. When $\mathrm \{d\}\mu = w\mathrm \{d\}m$ and $w$ is a Muckenhoupt $A_p$ weight, $1<p<\infty $, the removable singularities are characterized as the null sets of the weighted Sobolev space capacity with respect to the dual exponent $p^\{\prime \}=p/(p-1)$ and the dual weight $w^\{\prime \}=w^\{1/(1-p)\}$.},

author = {Björn, Anders},

journal = {Czechoslovak Mathematical Journal},

keywords = {analytic continuation; analytic function; Bergman space; capacity; exceptional set; holomorphic function; Muckenhoupt weight; removable singularity; singular set; Sobolev space; weight; analytic continuation; analytic function; Bergman space; capacity; exceptional set},

language = {eng},

number = {1},

pages = {179-227},

publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},

title = {Removable singularities for weighted Bergman spaces},

url = {http://eudml.org/doc/31023},

volume = {56},

year = {2006},

}

TY - JOUR

AU - Björn, Anders

TI - Removable singularities for weighted Bergman spaces

JO - Czechoslovak Mathematical Journal

PY - 2006

PB - Institute of Mathematics, Academy of Sciences of the Czech Republic

VL - 56

IS - 1

SP - 179

EP - 227

AB - We develop a theory of removable singularities for the weighted Bergman space ${\mathcal {A}}^p_\mu (\Omega )=\lbrace f \text{analytic} \text{in} \Omega \: \int _\Omega |f|^p \mathrm {d}\mu < \infty \rbrace $, where $\mu $ is a Radon measure on $\mathbb {C}$. The set $A$ is weakly removable for ${\mathcal {A}}^p_\mu (\Omega \setminus A)$ if ${\mathcal {A}}^p_\mu (\Omega \setminus A) \subset \text{Hol}(\Omega )$, and strongly removable for ${\mathcal {A}}^p_\mu (\Omega \setminus A)$ if ${\mathcal {A}}^p_\mu (\Omega \setminus A) = {\mathcal {A}}^p_\mu (\Omega )$. The general theory developed is in many ways similar to the theory of removable singularities for Hardy $H^p$ spaces, $\mathop {\mathrm {B}MO}$ and locally Lipschitz spaces of analytic functions, including the existence of counterexamples to many plausible properties, e.g. the union of two compact removable singularities needs not be removable. In the case when weak and strong removability are the same for all sets, in particular if $\mu $ is absolutely continuous with respect to the Lebesgue measure $m$, we are able to say more than in the general case. In this case we obtain a Dolzhenko type result saying that a countable union of compact removable singularities is removable. When $\mathrm {d}\mu = w\mathrm {d}m$ and $w$ is a Muckenhoupt $A_p$ weight, $1<p<\infty $, the removable singularities are characterized as the null sets of the weighted Sobolev space capacity with respect to the dual exponent $p^{\prime }=p/(p-1)$ and the dual weight $w^{\prime }=w^{1/(1-p)}$.

LA - eng

KW - analytic continuation; analytic function; Bergman space; capacity; exceptional set; holomorphic function; Muckenhoupt weight; removable singularity; singular set; Sobolev space; weight; analytic continuation; analytic function; Bergman space; capacity; exceptional set

UR - http://eudml.org/doc/31023

ER -

## References

top- Function Spaces and Potential Theory, Springer, Berlin-Heidelberg, 1995. (1995) MR1411441
- 10.1007/BF02392634, Acta Math. 83 (1950), 101–129. (1950) MR0036841DOI10.1007/BF02392634
- Dominating sets for analytic and harmonic functions and completeness of weighted Bergman spaces, Math. Proc. Roy. Irish Acad. 102A (2002), 175–192. (2002) MR1961636
- 10.1080/17476939808815069, Complex Variables Theory Appl. 35 (1998), 1–25. (1998) MR1609914DOI10.1080/17476939808815069
- Removable singularities on rectifiable curves for Hardy spaces of analytic functions, Math. Scand. 83 (1998), 87–102. (1998) MR1662084
- Removable singularities for weighted Bergman spaces, Preprint, LiTH-MAT-R-1999-23, Linköpings universitet, Linköping, 1999. (1999) MR2207013
- Removable singularities for ${H}^{p}$ spaces of analytic functions, $0<p<1$, Ann. Acad. Sci. Fenn. Math. 26 (2001), 155–174. (2001) MR1816565
- 10.1112/S002461070200354X, J. London Math. Soc. 66 (2002), 651–670. (2002) MR1934298DOI10.1112/S002461070200354X
- 10.1007/s00209-003-0524-0, Math. Z. 244 (2003), 805–835. (2003) MR2000460DOI10.1007/s00209-003-0524-0
- Selected Problems on Exceptional Sets, Van Nostrand, Princeton, N. J., 1967. (1967) Zbl0189.10903MR0225986
- 10.1307/mmj/1029005389, Michigan Math. J. 43 (1996), 51–65. (1996) MR1381599DOI10.1307/mmj/1029005389
- On the removal of singularities of analytic functions, Uspekhi Mat. Nauk 18, No. 4 (1963), 135–142. (Russian) (1963)
- Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam, 1985. (1985) MR0807149
- Analytic Capacity and Measure, Lecture Notes in Math. Vol. 297, Springer, Berlin-Heidelberg, 1972. (1972) Zbl0253.30014MR0454006
- On approximation in the mean by analytic functions, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 23, No. 13 (1968), 62–74. (Russian) (1968) MR0235131
- 10.1090/S0002-9947-1972-0432886-6, Trans. Amer. Math. Soc. 163 (1972), 157–171. (1972) Zbl0236.31010MR0432886DOI10.1090/S0002-9947-1972-0432886-6
- 10.1007/BF02384755, Ark. Mat. 12 (1974), 181–201. (1974) Zbl0297.30017MR0361050DOI10.1007/BF02384755
- Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Univ. Press, Oxford, 1993. (1993) MR1207810
- The Analysis of Linear Partial Differential Operators I, 2nd ed., Springer, Berlin-Heidelberg, 1990. (1990) MR1065993
- 10.2140/pjm.1982.102.369, Pacific J. Math. 102 (1982), 369–371. (1982) Zbl0511.30001MR0686557DOI10.2140/pjm.1982.102.369
- Analytic capacity of sets, joint nontriviality of various classes of analytic functions and the Schwarz lemma in arbitrary domains, Mat. Sb. 54 (1961), 3–50. (Russian) (1961) Zbl0147.33203MR0136720
- Removable singularities of analytic functions of the V. I. Smirnov class, Problems in Modern Function Theory, Proceedings of a Conference (P. P. Belinskiĭ, ed.), Akad. Nauk SSSR Sibirsk. Otdel. Inst. Mat., Novosibirsk, 1976, pp. 160–166. (Russian) (1976) MR0507787
- A simple proof of a removable singularity theorem for a class of Lipschitz functions, Investigations on Linear Operators and the Theory of Functions XI, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) Vol. 113, Nauka, Leningrad, 1981, pp. 199–203, 267. (Russian) (1981) MR0629840
- Weighted Sobolev spaces and capacity, Ann. Acad. Sci. Fenn. Ser. A I Math. 19 (1994), 95–113. (1994)
- 10.1307/mmj/1029004831, Michigan Math. J. 40 (1993), 459–466. (1993) Zbl0805.30001MR1236172DOI10.1307/mmj/1029004831
- Singularités non essentielles des solutions des équations aux dérivées partielles, Séminaire de Théorie du Potentiel (Paris, 1972–1974), Lecture Notes in Math. Vol. 518, Springer, Berlin-Heidelberg, 1976, pp. 95–106. (1976) MR0509059
- Removable sets of analytic functions satisfying a Lipschitz condition, Ark. Mat. 17 (1979), 19–27. (1979) Zbl0442.30033MR0543500
- Analytic functions of class ${H}_{p}$, Trans. Amer. Math. Soc. 78 (1955), 46–66. (1955) Zbl0067.30201MR0067993
- Functional Analysis, 2nd ed., McGraw-Hill, New York, 1991. (1991) Zbl0867.46001MR1157815
- 10.1007/BF02393237, Acta Math. 190 (2003), 105–149. (2003) MR1982794DOI10.1007/BF02393237
- Lectures on $n$-Dimensional Quasiconformal Mappings, Lecture Notes in Math. vol. 229, Springer, Berlin-Heidelberg, 1971. (1971) MR0454009

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.