Variational measures related to local systems and the Ward property of 𝒫 -adic path bases

Donatella Bongiorno; Luisa Di Piazza; Valentin A. Skvortsov

Czechoslovak Mathematical Journal (2006)

  • Volume: 56, Issue: 2, page 559-578
  • ISSN: 0011-4642

Abstract

top
Some properties of absolutely continuous variational measures associated with local systems of sets are established. The classes of functions generating such measures are described. It is shown by constructing an example that there exists a 𝒫 -adic path system that defines a differentiation basis which does not possess Ward property.

How to cite

top

Bongiorno, Donatella, Di Piazza, Luisa, and Skvortsov, Valentin A.. "Variational measures related to local systems and the Ward property of $\mathcal {P}$-adic path bases." Czechoslovak Mathematical Journal 56.2 (2006): 559-578. <http://eudml.org/doc/31048>.

@article{Bongiorno2006,
abstract = {Some properties of absolutely continuous variational measures associated with local systems of sets are established. The classes of functions generating such measures are described. It is shown by constructing an example that there exists a $\mathcal \{P\}$-adic path system that defines a differentiation basis which does not possess Ward property.},
author = {Bongiorno, Donatella, Di Piazza, Luisa, Skvortsov, Valentin A.},
journal = {Czechoslovak Mathematical Journal},
keywords = {local system; $\{\mathcal \{P\}\}$-adic system; differentiation basis; variational measure; Ward property; local system; differentiation basis; variational measure; Ward property},
language = {eng},
number = {2},
pages = {559-578},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Variational measures related to local systems and the Ward property of $\mathcal \{P\}$-adic path bases},
url = {http://eudml.org/doc/31048},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Bongiorno, Donatella
AU - Di Piazza, Luisa
AU - Skvortsov, Valentin A.
TI - Variational measures related to local systems and the Ward property of $\mathcal {P}$-adic path bases
JO - Czechoslovak Mathematical Journal
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 2
SP - 559
EP - 578
AB - Some properties of absolutely continuous variational measures associated with local systems of sets are established. The classes of functions generating such measures are described. It is shown by constructing an example that there exists a $\mathcal {P}$-adic path system that defines a differentiation basis which does not possess Ward property.
LA - eng
KW - local system; ${\mathcal {P}}$-adic system; differentiation basis; variational measure; Ward property; local system; differentiation basis; variational measure; Ward property
UR - http://eudml.org/doc/31048
ER -

References

top
  1. Multiplicative systems of functions and harmonic analysis on zero-dimensional groups, Baku (1981). (Russian) (1981) MR0679132
  2. On a dyadic Perron integral, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 48 (1993), 25–28. (1993) MR1274657
  3. 10.1006/jmaa.1998.5982, J. Math. Anal. Appl. 224 (1998), 22–33. (1998) MR1632942DOI10.1006/jmaa.1998.5982
  4. A new full descriptive characterization of the Denjoy-Perron integral, Real Anal. Exchange. 21 (1995–96), 656–663. (1995–96) MR1407278
  5. 10.1006/jmaa.2000.6983, J. Math. Anal. Appl. 250 (2000), 533–547. (2000) MR1786079DOI10.1006/jmaa.2000.6983
  6. 10.1016/S0022-247X(02)00146-4, J. Math. Anal. Appl. 271 (2002), 506–524. (2002) MR1923649DOI10.1016/S0022-247X(02)00146-4
  7. 10.1016/S0022-247X(03)00426-8, J. Math. Anal. Appl. 285 (2003), 578–592. (2003) MR2005142DOI10.1016/S0022-247X(03)00426-8
  8. 10.4153/CMB-1996-047-x, Canad. Math. Bull. 39 (1996), 390–401. (1996) MR1426684DOI10.4153/CMB-1996-047-x
  9. When absolutely continuous implies σ -finite, Acad. Roy. Belg. Bull. Cl. Sci. 8 (1997), 155–160. (1997) MR1625113
  10. 10.1006/jmaa.1997.5804, J. Math. Anal. Appl. 222 (1998), 64–78. (1998) MR1623859DOI10.1006/jmaa.1997.5804
  11. An integral involving Thomson’s local systems, Real Anal. Exchange 19 (1993/94), 248–253. (1993/94) MR1268851
  12. 10.1023/A:1013705821657, Czechoslovak Math. J. 51 (2001), 95–110. (2001) MR1814635DOI10.1023/A:1013705821657
  13. Real functions-Current Topics, Lecture Notes in Math., Vol. 1603, Springer-Verlag, 1995. (1995) Zbl0866.26002MR1369575
  14. Thomson’s variational measures, Real Anal. Exchange 24 (1998/99), 523–565. (1998/99) MR1704732
  15. 10.2307/44152493, Real Anal. Exchange 20 (1994–95), 340–346. (1994–95) MR1313697DOI10.2307/44152493
  16. Walsh series and transforms-Theory and applications, Kluwer Academic Publishers, 1991. (1991) MR1155844
  17. The inversion of approximate and dyadic derivatives using an extension of the Henstock integral, Real Anal. Exchange 16 (1990–91), 154–168. (1990–91) MR1087481
  18. The Integrals of Lebesgue, Denjoy, Perron, and Henstock, Graduate Studies in Mathematics., Vol. 4, AMS, Providence, 1994. (1994) Zbl0807.26004MR1288751
  19. Perron-type integration on n -dimensional intervals and its properties, Czechoslovak Math. J. 45 (1995), 79–106. (1995) MR1314532
  20. 10.1007/BF03323075, Results Math. 21 (1992), 138–151. (1992) MR1146639DOI10.1007/BF03323075
  21. 10.1112/S0024611503014163, Proceedings of London Math. Society 87 (2003), 677–700. (2003) MR2005879DOI10.1112/S0024611503014163
  22. Henstock integration in the plane, Memoirs of the AMS, Providence Vol. 353, 1986. (1986) Zbl0596.26005MR0856159
  23. The Riemann Approach to Integration, Cambridge Univ. Press, Cambridge, 1993. (1993) Zbl0804.26005MR1268404
  24. The Lebesgue and Denjoy-Perron integrals from a descriptive point of view, Ricerche di Matematica Vol. 48, 1999. (1999) Zbl0951.26005MR1760817
  25. Theory of the integral, Dover, New York, 1964. (1964) MR0167578
  26. 10.1007/BF02433805, J. Math. Sci. (New York) 91 (1998), 3293–3322. (1998) MR1657287DOI10.1007/BF02433805
  27. Series in multiplicative systems convergent to Denjoy-integrable functions, Mat. sb. 186 (1995), 129–150. (1995) MR1376095
  28. Generalized Henstock integrals in the theory of series with respect to multiplicative system, Vestnik Moskov. Gos. Univ. Ser. Mat. Mekh. 4 (2004), 7–11. (2004) MR2082794
  29. On classes of functions generating absolutely continuous variational measures, Real. Anal. Exchange 30 (2004–2005), 361–372. (2004–2005) MR2127542
  30. On Radon-Nikodim derivative for the variational measure constructed by dyadic basis, Vestnik Moskov. Univ. Ser. I Mat. Mekh. (2004), 6–12 (Engl. transl. Moscow Univ. Math. Bull. 59 (2004), 5–11). MR2129296
  31. Real functions. Lecture Notes in Math., Vol. 1170, Springer-Verlag, 1985. (1985) MR0818744
  32. Derivation bases on the real line, Real Anal. Exchange 8 (1982/83), 67–207 and 278–442. (1982/83) 
  33. Some property of variational measures, Real Anal. Exchange 24 (1998/99), 845–853. (1998/99) MR1704758
  34. On the Ward Theorem for 𝒫 -adic path bases associated with a bounded sequence 𝒫 , Math. Bohem. 129 (2004), 313–323. (2004) MR2092717

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.