A measure-theoretic characterization of the Henstock-Kurzweil integral revisited
Czechoslovak Mathematical Journal (2008)
- Volume: 58, Issue: 4, page 1221-1231
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLee, Tuo-Yeong. "A measure-theoretic characterization of the Henstock-Kurzweil integral revisited." Czechoslovak Mathematical Journal 58.4 (2008): 1221-1231. <http://eudml.org/doc/37898>.
@article{Lee2008,
abstract = {In this paper we show that the measure generated by the indefinite Henstock-Kurzweil integral is $F_\{\sigma \delta \}$ regular. As a result, we give a shorter proof of the measure-theoretic characterization of the Henstock-Kurzweil integral.},
author = {Lee, Tuo-Yeong},
journal = {Czechoslovak Mathematical Journal},
keywords = {Henstock variational measure; Henstock-Kurzweil integral; Henstock variational measure; Henstock-Kurzweil integral},
language = {eng},
number = {4},
pages = {1221-1231},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A measure-theoretic characterization of the Henstock-Kurzweil integral revisited},
url = {http://eudml.org/doc/37898},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Lee, Tuo-Yeong
TI - A measure-theoretic characterization of the Henstock-Kurzweil integral revisited
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 4
SP - 1221
EP - 1231
AB - In this paper we show that the measure generated by the indefinite Henstock-Kurzweil integral is $F_{\sigma \delta }$ regular. As a result, we give a shorter proof of the measure-theoretic characterization of the Henstock-Kurzweil integral.
LA - eng
KW - Henstock variational measure; Henstock-Kurzweil integral; Henstock variational measure; Henstock-Kurzweil integral
UR - http://eudml.org/doc/37898
ER -
References
top- Bongiorno, D., Piazza, L. Di, Skvortsov, V. A., 10.1007/s10587-006-0037-1, Czech. Math. J. 56 (2006), 559-578. (2006) Zbl1164.26316MR2291756DOI10.1007/s10587-006-0037-1
- Piazza, L. Di, 10.1023/A:1013705821657, Czech. Math. J. 51 (2001), 95-110. (2001) MR1814635DOI10.1023/A:1013705821657
- Faure, Claude-Alain, A descriptive definition of some multidimensional gauge integrals, Czech. Math. J. 45 (1995), 549-562. (1995) Zbl0852.26010MR1344520
- Henstock, R., Muldowney, P., Skvortsov, V. A., 10.1112/S0024609306018819, Bull. London Math. Soc. 38 (2006), 795-803. (2006) Zbl1117.28010MR2268364DOI10.1112/S0024609306018819
- Kurzweil, J., Jarník, J., 10.1007/BF03323075, Results Math. 21 (1992), 138-151. (1992) MR1146639DOI10.1007/BF03323075
- Tuo-Yeong, Lee, A full descriptive definition of the Henstock-Kurzweil integral in the Euclidean space, Proc. London Math. Soc. 87 (2003), 677-700. (2003) MR2005879
- Tuo-Yeong, Lee, 10.1016/j.jmaa.2004.05.033, J. Math. Anal. Appl. 298 (2004), 677-692. (2004) MR2086983DOI10.1016/j.jmaa.2004.05.033
- Tuo-Yeong, Lee, 10.1017/S030500410500839X, Math. Proc. Cambridge Philos. Soc. 138 (2005), 487-492. (2005) MR2138575DOI10.1017/S030500410500839X
- Tuo-Yeong, Lee, 10.1216/rmjm/1181069626, Rocky Mountain J. Math 35 (2005), 1981-1997. (2005) MR2210644DOI10.1216/rmjm/1181069626
- Tuo-Yeong, Lee, 10.1007/s10587-005-0050-9, Czech. Math. J. 55 (2005), 625-637. (2005) MR2153087DOI10.1007/s10587-005-0050-9
- Tuo-Yeong, Lee, 10.1016/j.jmaa.2005.10.045, J. Math. Anal. Appl. 323 (2006), 741-745. (2006) MR2262241DOI10.1016/j.jmaa.2005.10.045
- Thomson, B. S., Derivates of interval functions, Mem. Amer. Math. Soc. 93 (1991). (1991) Zbl0734.26003MR1078198
- Ward, A. J., On the derivation of additive interval functions of intervals in -dimensional space, Fund. Math. 28 (1937), 265-279. (1937)
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.